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Derivation of magnetic fields on a metal cylinder excited
by longitudinal and transverse magnetic dipole
transmitters: I. Cylinder in unbounded

dissipative dielectric medium

Robert Freedman'

1Schlumberger, Sugar Land, Texas, USA

Abstract we derive new and exact analytical and convergent integral representations for the
frequency-dependent complex magnetic fields H,(a, ¢, z) and H(a, ¢, z) excited by oscillating point
magnetic dipole transmitters on the surface of an infinitely long metal cylinder of radius a in an unbounded
dissipative dielectric medium. H,(a, ¢, 2) is calculated for a longitudinally oriented magnetic dipole parallel to the
cylinder axis and Hy(a, ¢, 2) for a transversely oriented magnetic dipole perpendicular to the axis. The solutions
are relevant to the computation of phase shifts and attenuations measured by electromagnetic propagation
logging tools, which have oscillating longitudinal and transverse magnetic dipole transmitters either on a
metal drill collar or on a cylindrical antenna pad. The integral representations can be readily evaluated using
simple numerical integration algorithms, e.g., Simpson'’s rule, to accurately compute the complex magnetic
fields on the cylinder surface. A second paper will address the two-layer cylindrical media problem.

1. Introduction

This paper derives exact numerically convergent integrals for magnetic fields on the surface of an infinitely
long metal cylinder where the magnetic fields are excited by oscillating point magnetic dipole transmitters
situated on the cylinder surface. The cylinder is assumed to be perfectly conducting and is embedded in
an unbounded and dissipative (i.e.,, conductive) dielectric medium. The two cases considered, which have
theoretical and practical interest, are defined by longitudinal and transverse orientations of the magnetic
dipole transmitters with respect to the cylinder axis which lies along the z axis. In a cylindrical coordinate
system (r, ¢, 2) the dipoles are located on the cylinder at (g, 0,0), where a is the radius of the cylinder. The
longitudinal dipole is in the z direction, and the transverse dipole is in the ¢ direction. For longitudinal
and transverse dipoles, we derive numerically convergent integrals for the respective complex phasor mag-
netic fields H,(a, ¢, 2) and Hyla, ¢,2) on the cylinder surface. The theoretical model for the transversely
oriented dipole is shown in Figure 1. The model for the longitudinal dipole is identical except that the dipole
is oriented along the z axis.

These new theoretical results are relevant to predicting the responses of electromagnetic (EM) propagation well
logging tools that are used to measure the EM properties of porous rock formations penetrated by a borehole.
These devices employ one or more magnetic dipole transmitters that excite EM waves which propagate in the
porous fluid-filled rock formations near the borehole wall. The transmitters and multiple receivers are either
situated on a drill collar or on a cylindrical antenna pad that is pressed against the borehole wall during the
measurements. The phase shifts and attenuations of the EM waves propagating in the formation are measured
between pairs of receivers that are longitudinally displaced from the transmitters. The measured phase shifts
and attenuations are input into a model for the tool and formation to predict the conductivities and dielectric
constants of the rock formations surrounding the borehole. The conductivities and dielectric constants can be
used to predict the types and volumes of fluids (water, oil, and gas) in the pore spaces.

Previously published analytical models for EM propagation logging tools are based on planar models for
which the transmitting and receiving antennas are situated on an infinite metallic ground plane rather than
on a cylindrical antenna pad [Freedman and Vogiatzis, 1979; Chew and Gianzero, 1981; Chew, 1988; Sayfina
et al., 1987]. These papers considered a tool operating at 1.1 GHz for which the effects of the cylinder curva-
ture are small and could be neglected. At lower transmitter frequencies the effects of pad curvature cannot
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be neglected. The calculation of the
magnetic field everywhere on a metal
cylinder is more complex than
calculations for a planar model. One
difficulty is that the real axis integrals
for the magnetic field on the cylinder
involve sums over all orders of Bessel
functions with complex arguments.
Moreover, the integrands are oscilla-
tory and poorly convergent. Wait
[1987] considered the microwave
dielectric logging problem and the
calculation of the magnetic fields pro-
duced by a slot antenna on a perfectly
conducting infinitely long cylinder
situated in a medium with an arbi-
trary number of cylindrical layers.
Wait derived a formal solution in
terms of poorly convergent real axis
Fourier integrals. Wait's paper, how-
ever, did not go beyond these
formal solutions, and it did not pro-
vide computable solutions that can
be used for practical applications.

Figure 1. Schematic of the theoretical model for a transversely oriented point We show that the oscillatory and

magnetic dipole transmitter located on the cylinder surface at (a,0,0). The ~PoOrly convergent integrands of the
metallic cylinder is in an unbounded dissipative dielectric medium. The real axis integrals for the magnetic
theoretical model for a longitudinally oriented magnetic dipole transmitter is  fields can be replaced by branch line
identical except that the transmitter magnetic moment is in the z direction. integrals with integrands that are
smooth functions that go to zero expo-
nentially for large values of a dimensionless integration variable. Moreover, we show that the integrands of the
branch line integrals can be expressed in terms of sums over the orders of Hankel functions with real arguments
that can be accurately evaluated using numerical integration. For the unbounded medium considered in this
paper, no bound states or guided modes can exist so that the real axis integrals have only branch point singula-

rities except for poles that are on the unphysical Riemann sheet in the complex integration plane.

Section 2 derives an exact convergent integral solution for H,(a, ¢, z). Section 3 derives an exact convergent
integral solution for H(a, ¢, z). These two solutions are displayed in equations (32) and (84), respectively, and
are the main results of this paper.

The author has used the magnetic fields derived in this paper to compute differential phase shifts and
attenuations for a 1.1 GHz logging tool [Freedman, 1992]; however, the discussion of EM well logging applica-
tions is not the purpose of this paper. This paper presents original and detailed calculations used to derive
computable solutions to two important EM problems. The results presented here should be of interest to
many scientists and engineers working on EM problems in academic, industrial, and military research centers.

2. Longitudinally Oriented Magnetic Dipole Transmitter

In this section we consider a point magnetic dipole transmitter situated on the surface of a perfectly conduct-
ing metallic cylinder. The infinitely long cylinder with radius a is embedded in a homogeneous and isotropic
lossy dielectric medium as shown in Figure 1.

A convergent integral representation, suitable for numerical computations, for the z component of the
magnetic field valid at all points except for z=0 on the surface of the cylinder is derived. The EM fields can
be derived by solving Maxwell’'s equations directly or alternatively; they can be derived from derivatives of
the Hertz magnetic vector potential [Stratton, 1941].
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For a longitudinally oriented point magnetic dipole transmitter in the z direction, the Hertz vector is also in
the z direction, i.e,, IT = (0, 0,I1,), and satisfies the following partial differential equation (PDE) in cylindrical
coordinates:

—Mod(r — ro)d(¢)d(2)

2
g tap tHME= r ! )

10 ranz 16°0, &°I,
ror or

for the dipole transmitter located at (ro,0,0), where, ro>a, a is the radius (in meters) of the “cylindrical pad,”
and J(-) are the well-known Dirac delta functions. Later we take the limit r, — a so that the transmitter is
located on the cylinder surface. The boundary conditions and the solution to equation (1) are given in the
following subsections.

2.1. Boundary Conditions

The EM fields outside of the source can be computed by differentiating the magnetic Hertz vector. The elec-
tric and magnetic fields are given by [Stratton, 1941]

E = iouVx I, 2
and

—

H=VxVxII. 3)

The boundary conditions for a perfectly conducting cylinder require that the tangential electric fields vanish
everywhere on the surface of the cylinder, ie., E,=E;=0 at r=a. From equation (2), E,=0 everywhere
because II has only a z component for a longitudinally oriented magnetic dipole transmitter in a homoge-
neous medium. This kind of EM wave is referred to as a transverse electric wave. From equation (2), the
requirement that £, =0 at r=a leads to the following boundary condition for the Hertz vector:
oll,
or

=0, atr=a. (4)

In the next section equation (1) is solved subject to the boundary equation (4).
2.2. Solution of the PDE for the Hertz Vector

To solve the PDE in equation (1), it is useful to write IT, in terms of the following integral transform:
2 g 0o
IL(r, $,z) == Egncosn ¢Jo I1,(r,2) cos .z d2, (5)
T n=0

where we have introduced the Neumann function &,=0p0+2(1 — J,0), where J,,¢ is the Kronecker delta
function so that ¢g=1 and ¢, =2 for n>1. The integral transform in equation (5) makes use of the fact that
the Hertz vector (actually a scalar field in this case) is an even function of ¢ and z, which follows from the
symmetry of the problem. If we substitute equation (5) into equation (1) we find that I1,(r, 1) obeys the
modified Bessel function equation:

1d / dl, 2 o Ml —Moed(r —ro)
75(’7)‘{“ — k) gt = —— ©)

In arriving at equation (6) we made use of two well-known representations of the Dirac delta function:

-
() = o Z £nCOS N ¢ (7a)
n=0
and =
1
5(z) = E_[coszlz di. (7b)
0

The general solution of equation (1) for r <r, can be written in terms of the modified Bessel functions K,
and /, as

Mo
—Kn(yro)ln(yr), 8)

I, (A, r) = AnKn(yr) + 47:

where we have defined the complex parameter, y = V42 — k?. The first term in equation (8) is the solution of
the homogeneous equation, which vanishes at infinity, and the second term satisfies the inhomogeneous
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equation and is the interior (r < r,) radial Green'’s function [Jackson, 1962]. The normalization factor multiplying
the Green’s function term in equation (8) is found by requiring that the solution has the correct discontinuity in
its derivative at r=r,. The discontinuity in the derivative is easily found from equation (6). The constants A, are
determined from the boundary condition in equation (4). Equations (4) and (8) are used to find that

Mo Knro)ly(7a)

Ap=— ;
am Ky(a)

©)

Substituting equation (8) into equation (5) gives the following solution for the magnetic Hertz potential for a
longitudinally oriented transmitter:

Zan cosn¢>J[A Kn(yr) +/4W Kn(yro)la(yr) |cos Az dA, (10)

with A, given in equation (9). The next step is to compute the voltages induced in receivers situated on the
cylindrical pad. For a longitudinally oriented dipole receiver the received signals are proportional to the z
component of the magnetic field H, evaluated at the receiver.

2.3. Solution for H, Expressed as a Real Axis Integral

The z component of the magnetic field is computed from equation (3) by using the curl operator in cylindrical
coordinates and recalling that I has only a z component:

10 ( o1, 1 %11,
Hy=———(r==2) - =—=. 11
‘ ror (r or ) r2 o’ an

A simpler equation for H, that is valid outside the source term can be obtained by combining equations (1)

and (11): 21,

62

H, = (12)

Straightforward differentiations and combining of terms in equations (10) and (12) obtains the following real
axis integral for H,:

= - —Ze,, cos nqﬁj [A Kn(yr) +M— Kn(yro)ln(yr) | exp(il|z])dA. (13)

In arriving at equation (13) we used the fact that the integrand is an even function of 4 to extend the integral
over the entire real axis and to write the cosine factor as a complex exponential. Also, we replaced the z coor-
dinate by its absolute value which follows from the symmetry of the problem. The integrand in equation (13)
can be simplified by recalling equation (9) for A, and considering the two terms in square brackets. Simple alge-
bra finds that these terms can be expressed in terms of the Wronskian of the modified Bessel functions, i.e.,

%KH(WO)
4 K, (ya)

M,
AnKn(ya) + 4nK n(yro)ln(ya) = W(Kn(ya),In(ya)), (14)
where in arriving at equation (14) we have set r,=a. We recall that the Wronskian for modified Bessel
functions for all integer orders is :

W(Kn(2),1n(2)) = Kn(2)I,(2) = Ky(2)In(2) = 7 (15)

The symbol z in equation (15) denotes a general complex variable. It is often used in this paper as the argu-
ment of Bessel functions in mathematical formulas such as Wronskians, asymptotic expansions, and recur-
rence formulas involving Bessel functions and should not be confused with the z coordinate of the
cylindrical coordinate system.

Substituting equation (14) into equation (13) and using equation (15) leads to the following real axis integral

for H,:
Kn

cos nq&I y

exp (it|z]) dA (16)

The real axis integral in equation (16) is a formal mathematical solution for the zcomponent of the complex
magnetic field everywhere on the surface of the cylindrical pad. It satisfies both the boundary conditions and
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Maxwell’s equations; however, it is
not useful for computations because
the real axis integral is poorly conver-
gent. The integrand oscillates and
increases linearly with A for large
values of 2 when the transmitter is
on the cylinder (i.e., when r,=a). In
the next section we use Cauchy’s the-
orem and the contour in Figure 2 to
replace the real axis integral by the
sum of two convergent branch line
-k integrals. It is easy to show that the
integrand in equation (16) vanishes
exponentially along the semicircular
Branch Cut contour in the upper half 1 plane for
points off the real axis as the circular
radius approaches infinity. This is
clear for |z|>0 if the contour in
Figure 2 is used to perform the inte-

Figure 2. The contour and branch cut used to replace the poorly convergent gration. The integrand must also van-
real axis integrals for the magnetic fields in equations (18) and (81) with the ish on the semicircular contour for
convergent branch line integrals y, and y_ using Cauchy’s theorem.Onthe z=0 which is less obvious. The
branch cut, Rey =0. The contour integration in the complex 4 plane is per-
formed on the upper Riemann sheet, where Rey > 0, for which the radiation
condition is satisfied.

asymptotic behaviors of K, (yr,) and K',,
(ya) when y— oo (e, for |}| — e on
the semicircular contour) in equation
(16) shows that the integrand behaves like ye 7>~ which goes to zero provided that Rey > 0. The latter con-
dition is the radiation condition which requires that the fields vanish at infinity. The Re y > 0 requirement can
also be shown from the asymptotic behavior, as r — oo of the exterior Green’s function (same as equation (8) if
rand r, are interchanged in the Green'’s function).

We can rewrite equation (16) using the well-known expression for the derivatives of modified Bessel func-
tions of the second kind with integer order, i.e.,

Ky(2) = =3 (Ko 1(2) + Kni 2), a7)

where we note again that primes on Bessel functions in this paper denote differentiation with respect to their
arguments. On substitution of equation (17) into equation (16),

My & i YKn(yro)
£nCOS n¢I

Hz(07 ‘7572) == oo |:Kn,1 (VG) + Kns (ya)

exp(id|z])dA. (18)

2.4. Derivation of a Convergent Integral for H,

In this section we use Cauchy’s theorem and the contour shown in Figure 2 to derive an exponentially con-

vergent integral representation for H, to replace the real axis integral in equation (18). Because y = V42 — k*
is a double-valued function in the complex 4 plane, the integrand has branch points at 1=+ k. Cauchy'’s
theorem requires that the integrand be analytic and single valued in the cut 1 plane. This requires that there
must be only one value of y for each value of 1 on the contour where the integration is performed. The sign of
y is fixed, and the integrand is single valued provided that the contour does not cross the branch cut in the
complex 4 plane in Figure 2 defined by Rey=0. If the branch cut is crossed, the second Riemann sheet is
passed to in the complex A plane and the sign of y changes. The complex A plane therefore consists of two
Riemann sheets that are joined by the branch cut on which Rey=0. On the physical or upper sheet
Re y > 0 and the radiation condition, i.e., the vanishing of the fields at an infinite distance from the transmitter
is satisfied. Using Cauchy’s theorem we can replace the real axis integral in equation (18) by the sum of the
two branch line integrals around the branch cut. The reader might be concerned that the integrand in
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equation (16) (or in equation (18)) has poles at the complex zeroes of K'n(ya) and that the residues of these
poles contribute to H,. This would be unphysical because there can be no bound states or guided modes
in an unbounded medium. Fortunately, there are no such modes because the zeroes of K,(z) in the complex
z plane are in the second and third quadrants for which the real parts of the complex zeroes are negative
[Kerimov and Skorokhodov, 1984]. Therefore, zeroes of K,'q(ya) are present only on the unphysical Riemann
sheet, where Re y < 0; therefore, these poles do not contribute to H,. The contour integration in Figure 2 is
performed on the physical sheet where Rey > 0.

The choice of the branch cut in Figure 2 leads to branch line integrals with integrands that decrease exponen-
tially to zero as the dimensionless integration variable increases. Moreover, the Bessel functions in the inte-
grands have real arguments which make possible very accurate numerical computations of the magnetic
field. The branch cut is a hyperbola in the 2 plane. This can easily be seen by first recalling that y* =A% — k2.
On writing the latter complex equation as separate equations for its real and imaginary parts and using
the fact that Re y=0 one finds from the equation for the imaginary part that A' A" = k' k", which are hyperbolas
that start at A==+k in the complex A plane. One can show from the equation for the real part of y> =% — k*
that the hyperbolas must asymptote to the vertical axis where A'=0. On the branch lines labeled y, and
y_, the complex parameter y is purely imaginary and has the values

y=pL= uexp(%t) (19a)
and

y=r-= UEXP(—%T)- (19b)

In the preceding equations u is a real coordinate variable ranging from e to 0 on the branch line y, and from 0
to « on the branch line y_. The integrand is an analytic and single valued function (regular) in the cut 4 plane.
By Cauchy’s theorem the following formula is obtained for H,:

Hz(07 ¢7Z) = 7(l++ I—)7 (20)

where I, and /_ are the integrals along the branch lines and where we have made use of the facts that the
integral along the semicircle vanishes as the radius goes to infinity and that the integrand has no poles on
the physical Riemann sheet on which the integration is performed.

To calculate the branch line integrals we make use of the following formulas that relate modified Bessel func-
tions of the second kind to Hankel functions. We use the following relations [Olver, 1965]:

Kn(z) = %nexp (I%n) Hﬁ,” (z exp (%)) (—n <argz< g) (21a)

and

Kn(z) = —%texp(—”%n) H£72> (zexp (—%E)) (—g < argzin). (21b)

From these identities the functions K,(z) with pure imaginary arguments transform to Hankel functions with
real arguments. To evaluate the branch line integral I, we first evaluate the modified Bessel function terms in
the integrand of equation (18) on the branch line by recalling equation (19a) and using equation (21b):

o _ o sooe(3))

Y(Kn-1(ya) + Kny1(ya)) (u exp (’3")) (an (ua exp (%I) > + Kn1 (UG exp <I§n) ) ) | 22)

HP (ua)
u(Hi) (va) = HEY, (ua) )

where we set r,=a so that the transmitter is on the surface of the cylinder.
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The Hankel functions of the second kind on the right-hand side of equation (22) are related to ordinary Bessel
functions of the first and second kind:

H? (ua) = Jn(ua) — i, (ua). (23)
Using equation (22) and evaluating the integral in equation (18) on the branch line y, results in
- 2 (ua)exp (/\/k2 —u? |z\>
Z &n COS n¢I 5 2
oViE - (HM (va) — HY, (ua))

du, 24
27[2 (24)
where we have made the change of integration variables from A to u using

udu
dh=———. (25)
ViE — w2
The evaluation of the branch cut integral on y_ in Figure 2 can easily be done in a similar manner by recalling
equation (19b) and making use of equation (21a):

" ua)exp( ivk* — u? |z|>

L= Z &n COS ncf)_[ du, (26)
= 0 VI = 0 (ML, (ua) — Y, (ua)
where the Hankel functions of the first kind are
HU (ua) = J,(ua) + i¥,(ua), 27)

which are complex conjugates of the Hankel functions of the second kind in equation (23).

Recalling equation (20) and using these results finds that

(28)

- ivk? — 2 1
Ze coanﬁj’u exp( a— ‘Z|) Im H,g)(ua) du
! k* — u? D'ua)|

where Im[-] denotes the operation of taking the imaginary part of the expression in brackets, and we used the

derivative relation )
() = (442

The integral for H, converges exponentially for large values of the integration variable and can be used for
computations in its present form. The Hankel function term in brackets in equation (28) can be simplified
by further manipulations. To proceed, we take the imaginary part of the term in brackets after multiplying
the numerator and denominator by the complex conjugate of the denominator which leads us to consider

the following intermediate expression:
1 . . , 2
Elm[{(Jn(ua) +iYn(ua)} x{Jp_1(ua) — i¥n_1(ua) — Jpi1(ua) + i¥ni1(ua)}] = — = (30)

where we used the following Bessel function Wronskian [Olver, 1965] relation valid for any complex variable z
and for all integer orders:

W(Un(2), Yn(2) = In(2)Y,(2) = Ya(2),(2) = . (31)
Assembling these results we finally find the following compact and convergent solution for the zcomponent
of the magnetic field everywhere on the cylinder except for z=0,
.[XG x, ka, |z\)
1) 2
)|

where we define the dimensionless integration variable x = ua, the dimensionless z coordinate |z| = |z|/a,
and the function

_ iMy &
H.(a, $,2) :ng—a‘;E & COSNGh dx, (32)
n=0

0

eV (ka) —x[2]
G(x,ka,|z|) = ————. (33)
(ka)* — x2
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z=0.006m «=25.
¢=10.deg. tand=1.

The integral in equation (32) is an
exact and convergent integral repre-
sentation for the z component of the
complex frequency-dependent mag-
netic field everywhere on the cylinder
surface except for z=0. Observe that

T the only complex quantity in the inte-
grand in equation (32) is the function
- in equation (33). The constant factor
L multiplying the sum in equation (32)
cancels when computing attenuations
and phase shifts between receiver
pairs because the latter quantities are
computed from real and imaginary
parts, respectively, of logarithms of
the ratios of the complex magnetic
field evaluated at the receiver posi-
tions [Freedman and Vogiatzis, 1979].
The real and imaginary parts of
H,(a, ¢,z) can be accurately computed
from equation (32) by using a simple
numerical integration algorithm, e.g.,
Simpson’s rule with automatic interval
halving until convergence is achieved.
For large values of x, the integrand decays to zero exponentially provided that z+0; i.e., the transmitter and
receiver are displaced from one another along the cylinder axis which is the case of practical interest. The inte-
grand is computed for each value of the integration variable x by performing the summation in equation (32).
The number of terms required in the summation increases with x and is problem dependent, but computations
performed by the author typically required no more than 30 to 40 terms for computing the responses of a
1.1 GHz dielectric logging tool. The computations are both fast and accurate because the integrand is expressed
in terms of Bessel functions with real arguments. The real and imaginary parts of the integrand in equation (32)
are smooth functions of the integration variable x as shown in Figure 3 for a typical case. It is easy to show that

Integrand
0

-100 -80 -680 -40 -20
1

L

T T T T T T
80 100 120 140 160 180 200
x FREEDMAN

o
2
1=
&
=)
@
=)

Figure 3. The real (solid) and imaginary (dashed) parts of the complex inte-
grand in equation (32) plotted versus the dimensionless integration variable.
The integrand is very smooth and decays rapidly to zero as the integration vari-
able increases, a behavior that is typical for the integrands in equations (32)
and (84). In this example, the receiver z coordinate was selected to be near
(0.5 cm) the transmitter to show that the integrands decay quickly even for
small z values. In practice, the transmitter-receiver distances are from about
3 to 12 cm. It was also found that at 1.1 GHz only 30 to 40 azimuthal modes
(i.e., orders of the Hankel functions) in the summations were needed to achieve
convergence of the integrands.

the integrand vanishes for x— 0 and for x — X,ax Where x., depends inversely on the z coordinate of
the receiver.

3. Transversely Oriented Magnetic Dipole Transmitter

This section presents the detailed solution for a transversely oriented magnetic dipole transmitter situated on
the surface of a perfectly conducting infinitely long cylinder situated in a lossy dielectric medium. As will
become evident, this problem is more complex than that of the longitudinally oriented transmitter discussed
in the previous section. The magnetic Hertz vector potential obeys the vector Helmholtz equation:

 Modlr — ro)0(6)0@)

V2T KT = éy (34)
r

for a point magnetic dipole transmitter at (r,,0,0) in cylindrical coordinateiand oriented along the ¢ direction
as indicated by the unit vector €4 in equation (34). The vector operator vZin cylindrical coordinates [Morse
and Feshbach, 1953] leads to coupled equations for II, and I1,; e.g., the two coupled PDEs are found from
equation (34):

Hd’ 2 61_[, Moé(r - ro)5(¢)5(2)

Vi, ——24+= K, = — 35
¢~ +I’25¢+ & , (35)
and
11 2 oIl
2 r ¢ 27
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As evident from the derivative terms in the two coupled equations that in order to satisfy the equations, I1,
must be chosen as an even function of ¢ and I, as an odd function of ¢. To proceed solutions of the form
are assumed:

I, = an cos nlly,(r,z) (37
n=0
and -
II, = Z ensinngIl, ,(r,2), (38)
n=0

where we recall that go=1 and &, =2 for n>1. It is convenient to define the operator V3 as

10/ 6 &
Vie——(r=)+=.
R ror (r 6r) o 39
We then observe that ,
1 0
V2 :v§+7267)2, (40)

and on substitution of equations (37) and (38) into equations (35) and (36),
(n?+1) 2n Mod(r — r,)d(2)

2 2 _
VR H¢,,n — 2 H¢,n + rTH,"n + k H¢,n = > (41)
and
n? 41 2n
V,tzgnr,n - ( 2 )Hr,n + r_znd;,n + kznnn = 07 (42)

where in arriving at equation (41) we used a well-known representation for the Dirac delta function:

(o) = Zln HZ:; &n COS NP (43)
To proceed, we introduce the cosine transform of ﬁ¢4n:
Hyn(r,z) = %J':ﬁq;‘n(r, A)cos iz di, (44)
and the inverse
yn(r,2) = J:Hti,,n(r,z)cos/lz dz, (45)

and similar cosine transform equations for I1, , which are not displayed here to save space. Upon taking the
cosine transform of equation (41) and using a well-known representation for the Dirac delta function,

‘I 00
8(z) = EIO cos 1z dJ, (46)
and we find the following:
10 ( olly, , n 1\~ 2n ~ = Mod(r—ro)
ror <r or ) </1 g Mg+ r2 My + KTy = dnr “47)

Taking the cosine transform of equation (42) obtains

1 0 ( oIl +1\= | 2n~ 0
(fnv_(ﬁ+”j)nm+§nw+ﬁmﬂ—a (48)
r r

ror or

The next step is to introduce the sum and the difference of the potentials ﬁan and ﬁ,‘,,, which leads to a pair
of uncoupled equations. The sum and difference potentials are defined, respectively, by

s n(r,2) = Hgn(r, 2) + (1, 2) (49)
and
Tpn(r,A) = Mg n(r,2) — T, o(r, 2). (50)
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Adding equations (47) and (48) results in

10 ( olls, ,  (n=1)2\~ = Mod(r—r,)

ror (’7) - (l T A v
and subtracting the equations gives

1 I 1%\ ~ - M.S(r —

10 Mon) _ (2, (0417 i b, + k2T, — — MO =ro). (52)

ror or r 4nr

The homogeneous equations (51) and (52) are satisfied by modified Bessel functions valid in the domain
a<r<eo. The inhomogeneous equations are satisfied by the interior radial Green’s functions. The general
solutions for r < r, that vanish at infinity are

~ M

Ils, = Ap Kn—1()’r) +4_7:Kn—‘|(7ro) In—1 (W) (53)
and

~ M,

Hpy = By Knia(yr) + EKHJH (ro) Inta (yr), (54)

where the coefficients A, and B,, are determined from the boundary conditions on the EM fields. The second
term in each of these two equations consist of interior radial Green'’s functions and y = V4> — k*. The factor
multiplying the Green'’s function is determined by the discontinuity in the derivative of the Green functions at
r=r, which can be computed from equations (51) and (52). Note that ﬁ(ﬁ‘,, and ﬁ,‘,, can be computed from
equations (53) and (54) using equations (49) and (50). First, however we must determine the coefficients A,
and B, in the preceding equations by using the boundary conditions satisfied by the EM fields.

3.1. Boundary Conditions

The boundary conditions require that the tangential components of the electric field E, and E4 vanish on the
surface of the perfectly conducting cylinder for r=a:

<V>< ﬁ) 5=0 (55a)
and

<V>< ﬁ) 7 =0, (55b)

where we recall that IT = (I, 4, 0), which leads for E,=0 to

oy Ty 100\
( a " r or 6¢>,:a =0 (56)
and E;=0 leads to
<an,> =0. (57)
0z r=a

The boundary condition equations can be written in terms of the cosine transforms of the Hertz potentials by
recalling equation (44) and the analogous cosine transform for II,. Equation (56) then leads to

(—and"” + —H""”> =0 (58a)
or r
r=a

And the boundary condition in equation (57) leads to

M, »(a,2) = 0. (58b)

The term that has the derivative of I1, in equation (56) is not present in equation (58a) because it vanishes by
virtue of equation (58b). These boundary condition equations are used to determine the coefficients A, and
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B, in equations (53) and (54). However, to proceed we first must write the boundary conditions in terms of the
sum and difference potentials. Recalling that

- s, +11
H(ﬁ‘n _ S.n “2' D,n (59)
and
- I, —1I
n = % (60)

It is easily found from equations (58a), (58b), (59), and (60) that
ﬁsﬂ(a7l) = ﬁD,n(aJ') (613)

and

or a

(a(ﬁs,n + ﬁDtn) ) (ﬁs,n + ﬁDﬂ)) o 61b)

Performing some straightforward but tedious algebra on the boundary condition in equation (61b) after
recalling equations (53) and (54) results in

M
AnKn(ya) + BnKn(Va) = 4_;ln(ya)(Kn—1 (Vro) + Kni (V’o))> (62)
and from the boundary condition in equation (61a) it is easily found that

M
AnKn—1(ya) — BnKni1(ya) = 2 (Kn+1(7ro)lns1(ya) — Kn—1(yro)ln-1(ya)). (63)

-0

T
In deriving equation (62), we made use of the following useful relations for derivatives of modified Bessel
functions [Olver, 1965]:

n+1

Knir(2) = —Kn(2) Kni1 (2), (64a)
Kr(2) = ~Kn(2) + 7 Koa ), (64b)
lhir @) = () = @), (640
and
s (2) = (2) + " Iy 1 (2), (64d)

The coefficients A, and B, in equations (53) and (54) are found by solving equations (62) and (63). After con-
siderable algebra we can write the solutions in the following form:

A — Moln—1 (Va) Mo Kni1 (Va) (65)
! 4n 2nya Kn(ya)(Kn+1(ya) + Kn-1(ya))
and
B — Molni1(ya) =~ Mo Kn1(ya) (66)
5 4n 2mya Ky (ya)(Kni1(7a) +Kn-1(ya))’

In arriving at these equations we have set r, =g, so that the point magnetic dipole transmitter is on the sur-
face of the cylinder. We also used some well-known Bessel function Wronskian equations, i.e.,

1
Kn—1(ya)ln(ya) + Kn(ya)ln—1(ya) = — (67a)
and ya

1
Kni1(ya)ln(ya) + Kn(ya)lnia (ya) = y_a' (67b)

In the next section we use the results of the preceding two sections to derive a convergent integral represen-
tation for Hy(a, ¢, 2) that is valid everywhere on the cylinder except for z=0.

FREEDMAN
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3.2. Calculation of Real Axis Integral for Hy(a, ¢, 2)

We recall that the magnetic field can be computed from the equation H = VxVxTII, so that in cylindrical
coordinates:
Py 10y Ty Mg 100, 1 8T,
Hy=——2—- -t - 68
¢ 2 ra TR a2 rogtraas (68)

The complicated expression in equation (68) can be simplified by using the homogeneous equation (34)
satisfied by the Hertz vector outside of the source to reduce to the simpler form
1%, L] oI,
a’ a¢*  aordg’

Hy(a, ¢,2) = K’Tly + — (69)

The term with the first-order derivative of I1, with respect to ¢ in equation (68) does not contribute to Hy(a, ¢, 2)
because it vanishes from the boundary condition in equation (58b). Recalling equations (37), (38), (44), (53), (54),
(59), and (60) we used equation (69) to find

Hola, ¢,2) = E}(W——)mnd{P+—/mwdhﬂww+ﬁﬁggwmmkwmm}mhw

+ %i — cos n(/)Jm{ { _(ya) + IZI—; Kna(ya)l_, (ya)] -y {B KnJr1 (ya) + /4\/’—7: Kni (ya)l'nJr1 (ya)} }cos JzdA.

n=0

(70)

Equation (70) can be simplified as follows. The above integral is conveniently written as

Zs,, cos n¢f (T1n(2) + Tan(A))cos Az dA, (71)

and recalling equations (53) and (54) finds that
n2
Tin = (k2 - —> (Tisn + ion ). (72)
The second term in equation (71) is more complicated. It is the sum of two terms, i.e.,
ny ' M . ny : M '
Tan =2 Ak, 100) + 52 Kns Gy 100)| =7 |80k 100) + 52 Knis by 00) ] 73
Equations (64a)—(64d) are used for the derivatives of the Bessel functions to find after some algebra that
nylnr~ ~ M
m:lfﬁwm+mmﬂ—w—mnwwlmmwﬁwwnmmﬂ (74)
a |ya 4
Then, equations (72) and (74) are added:

nMol, (}/a)

n ~ ~
Tin+Ton=— ;yKn(Va) l:(An - Bn) + 2ma :| + kz <H$n + HDn), (75)

where in arriving at equation (75) we made use of the recurrence relation for the modified Bessel functions K,
[Olver, 1965]:

2
mmm7m4m=£mw» (76)

Finally, equations (65) and (66) are used to simplify the term in brackets in equation (75):

nMol,(ya nM,
A — B+ oln(ya) _ , 0 7 77)
2mya n(ya)”(Kns1(ya) + Kn-1(ya))
where we used equation (76) and a similar recurrence relation for the modified Bessel functions /,,:
2n
Ins1(ya) — In-1(ya) = *yfalrJ(Va) (78)
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The last term in equation (75) can also be simplified by using equations (53), (54), (65), and (66):
My Kn—1(ya)Kni1(ya)

I, + Ip, = —2 . (79)
T T ma Ka(ya) Ko (a) + Koo1 (7))
Assembling these results and combining terms gives
Mo [(KaYKn-1(9)Kni1 (y0) = n2K2(ra)]
T1n + T2n =3 ’ (80)
mya Kn(ya)[Kni1(ya) + Kn-1(ya)]
which on substitution into equation (71) leads to the following real axis integral solution:
[ (ka)’Kn_1(ya)Kpyr (ya) — nZK,z,(ya)] exp(id|z|)
Hg(a, ¢,z) =595 Zr,,cosnd) I da. (81)

(70)Kn(ya)[Kn11(ya) + Kn1(ya)]

The extra factor of 2 multiplying the sum in equation (81) comes from noting that the integrand is an even
function of 1 and extending the limits of the integral to cover the entire real axis. We also replaced z in the
exponential with |z| because it follows from the symmetry of the problem that the magnetic field is an even
function of z. Similar to the real axis integral for H,(a, ¢, z) in equation (18) the integrand in equation (81) is
oscillatory and poorly convergent for large 1 so it is not useful for numerical computations. Following similar
arguments to those in section 2.4, the integral in equation (81) has branch points in the complex 4 plane at
A==k and the integral can be replaced by the sum of two convergent branch line integrals using Cauchy’s
theorem and the contour in Figure 2. The integrand in equation (81) has no poles on the physical Riemann
sheet because the zeroes of both K,(z) and K;7 (z) in the complex z plane are in the second and third quadrants
so the real parts of the complex roots are negative. Therefore, the zeroes of the functions K,,(ya) and K;,(ya)
(the factor in brackets) in the denominator of the integrand in equation (81) occur only on the unphysical
Riemann sheet, where Re y < 0. The contour integration in Figure 2 is performed on the physical Riemann
sheet, where Rey > 0, for which the radiation condition is satisfied.

3.3. Derivation of a Convergent Integral for H,

The real axis integral in equation (81) can be transformed into the sum of two convergent branch line inte-
grals using the same contour shown in Figure 2. It is easy to show that the integrand vanishes everywhere
on the semicircle as its radius approaches infinity and that the integral on the circle around the branch point
vanishes as the radius of the circle approaches zero. The two branch line integrals /. and /_ can be evaluated
following the same procedure used in section 2.4. Recalling equations (19a), (21b), and (25) and applying
some algebra results in

[m)“wﬁm—dWmﬂwmw>

I = onia 3isncosn¢I dx, (82)

where we have introduced the dimensionless integration variable x=ua, defined the normalized z
coordinate |z| = |z|/a and recalled the function G(x,ka,|z|), which was defined in equation (33). The
Hankel functions of the second kind are defined in equation (23). For large values of the integration variable
the integrand vanishes exponentially provided that z+ 0. The branch line integral /_ is also easily performed
by using the transformation in equation (19b) and also using equation (21a). Applying some algebra yields

[)%mMWMMHNWWWFWMﬁD
dx. (83)

Zancos nd;J

271',2 3

Because the integrand in equation (81) is a regular function of 1 in the cut A plane and has no poles, we can
use the contour in Figure 2 and Cauchy’s theorem (e.g., see equation (20)) to express the real axis integral in
equation (81) as the sum of the two branch line integrals in equations (82) and (83). These equations add to

I .
Hola,6.2) = 5525 >~ oncosn &y Glxkas 1) (ka)*Un(x) — V0] . (84
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where we have defined the functions

n+1

im 2,02, - H6 -6

Un(x) = ‘H£71>(X)‘2"H,(11)'(X)‘2 ’ ()
20} HO (x) - KL
Vn(X)ImRH,, (x)) HY (x) (x)] ”

M2 00 |2 A0 2

The dot symbol denotes ordinary scalar multiplication, and Im[ ] denotes the operation of taking the imagin-
ary part of the complex quantity in brackets. The primes are derivatives of the Hankel functions with respect
to their arguments.

The integral in equation (84) is an exact and convergent integral representation for the ¢ component of the
complex frequency-dependent magnetic field, and it is convergent everywhere on the cylinder surface
except for z= 0. The only complex quantity in the integrand in equation (84) is the function G(x, ka, |z|) defined
in equation (33). The real and imaginary parts of Hy(a, ¢, z) can be computed accurately from equation (84) by
using any numerical integration algorithm, e.g., Simpson’s rule with automatic interval halving until conver-
gence is achieved. For large values of x, the integrand decays to zero exponentially provided that z+0, i.e.,
for the transmitter and receiver displaced from one another along the cylinder axis which is the case of
practical interest. The integrand is computed for each value of the integration variable x by performing the
summation in equation (84). The number of terms required in the summation generally increases with x
and is problem dependent, but computations performed by the author typically required no more than 30
to 40 terms for computing the responses of a 1.1 GHz dielectric logging tool. The computations are fast
and accurate because the integrand is expressed in terms of Bessel functions with real arguments. It is easy
to show that the integrand in equation (84) has an integrable singularity as x — 0. The singularity comes from
the small x behavior of the n=0 term enclosed in brackets in equation (84). This poses no problems for the
accuracy of the numerical integration because for small x the integral can be done analytically, and this
contribution (negligible for sufficiently small values of x.,in) can be added to the numerical integration in
the interval from Xpmin t0 Xmax. The upper limit X, of the integral is determined by choosing a value of
the integration variable for which the integrand has decayed to a negligibly small value.

4. Conclusions

New and exact integral representations were derived in this paper for complex magnetic fields on a metal
cylinder excited by longitudinal and transverse oscillating magnetic dipoles on the cylinder surface. These
solutions are useful for performing accurate computations for problems of interest in EM well logging. The
computational details and results should also be of interest to scientists and engineers working on academic,
industrial, and military EM problems.
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Erratum

In the originally published version of this article, the title was lacking a Roman numeral | to indicate that it is the first part of a multi-part series.
The error has since been corrected and this version may be considered the authoritative version of record.

FREEDMAN

MAGNETIC FIELDS ON A METALLIC CYLINDER 955


http://dx.doi.org/10.2118/14188-PA
http://dx.doi.org/10.1109/TMTT.1987.1133645


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


