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ABSTRACT

This paper pro poses a new method for solv ing inverse
prob lems for which a large cal i bra tion data base exists
con sist ing of pairs of inputs and cor re spond ing out puts.
Dis tinct pairs of input and out put data in the data base cor -
re spond to dif fer ent states of the under ly ing phys i cal sys -
tem whose prop er ties are the sub ject of the inver sion.
Either empir i cal mea sure ments or numer i cal com pu ta -
tions, e.g., using a for ward model, can be used to con struct 
the data base. 

The method uses radial basis func tion (RBF) inter po la -
tion, a method for approx i mat ing smooth and con tin u ous
multivariate func tions of many vari ables. RBF inter po la -
tion is used to derive a non-lin ear map ping func tion from
which the prop er ties of phys i cal sys tems (e.g., crude oils,
sand stones, etc.) are pre dicted from input mea sure ments
that are not in the data base. 

An advan tage of this method over the tra di tional
approach of fit ting data to a for ward model is that it can be 
used to solve well-log ging and geo phys i cal inverse prob -
lems asso ci ated with unknown for ward mod els. In other
cases where accu rate for ward mod els are known, the
method can be used to solve inverse prob lems in real time, 
where these might oth er wise be computationally too
expen sive or, as in many prac ti cal cases, lead to
ill-behaved non-lin ear minimization. Con struc tion of a
robust data base that spans the phys i cal range of input and
out put data encoun tered in prac tice is essen tial for accu -
rate pre dic tions. Data base con struc tion is the most chal -
leng ing part of apply ing the method.

The method is intu itive and does not require iter a tive
train ing. It is eas ier to imple ment than inver sion meth ods

based on arti fi cial neu ral net works, which use non-intu -
itive mul ti lay ered net works and require lengthy iter a tive
train ing. 

Test ing and benchmarking of the inver sion method is
per formed on three chal leng ing exam ple prob lems of cur -
rent inter est in well log ging. Exam ple 1 shows that vis cos -
i ties of dead crude oils can be pre dicted from nuclear mag -
netic res o nance (NMR) relax ation time mea sure ments.
The pre dicted vis cos i ties are in good agree ment with
those mea sured by a Couette-type viscometer and are
more accu rate than vis cos i ties pre dicted using pub lished
empir i cal cor re la tions. The first exam ple also shows that
molec u lar com po si tions of dead crude oils can be pre -
dicted from NMR relax ation time mea sure ments. The pre -
dicted com po si tions are in good over all agree ment with
those obtained from gas chro ma tog ra phy. The method
used in this paper can also be applied to data bases con -
structed from mea sure ments made on live crude oils.
Exam ple 2 shows that bore hole-cor rected sig nals can be
pre dicted from raw mea sure ments made by a 3D induc -
tion tool. The pre dicted bore hole-cor rected sig nals are in
excel lent over all agree ment with the tar get tool responses
(i.e., for homo ge neous media). Exam ple 3 shows that
mass den sity and molec u lar com po si tion of dead crude
oils can be pre dicted from near-infra red (NIR) spec tra.
These exam ples dem on strate that the meth od ol ogy pro -
posed in this paper is appli ca ble to a large variety of
problems encountered in well logging and geophysical
applications.
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INTRODUCTION

The inter pre ta tion of well log ging mea sure ments often
involves for mu lat ing and solv ing a math e mat i cal inverse
prob lem. A typ i cal chal lenge is to pre dict the phys i cal prop -
er ties of some under ly ing phys i cal sys tem from a suite of
mea sure ments. Indeed, this is the sole rea son for per form -
ing the mea sure ments in the first place.

For exam ple, mea sure ments could be from a bore hole
log ging tool or a suite of tools for which the under ly ing
phys i cal sys tem is the porous, fluid-filled rock for ma tion
sur round ing the bore hole. In this case the phys i cal prop er -
ties pre dicted from the mea sure ments might include poros -
ity, per me abil ity, fluid type and sat u ra tion, and bed thick -
ness. For geo phys i cal explo ra tion, the mea sure ments could
be sur face mea sure ments of reflected seis mic wave energy,
as a func tion of wave length, made at dif fer ent receiver loca -
tions. In this case, the under ly ing phys i cal sys tem is the
subsurface, con sist ing of lay ers of porous sed i ments. The
subsurface prop er ties of inter est are the hydro car bon-bear -
ing lay ers, if any, and their subsurface depths and thick -
nesses. 

The tra di tional approach used to solve inverse prob lems
is to fit a the o ret i cal or empir i cally derived for ward model
to the mea sure ments (Tarantola, 2005). The for ward model
is a func tion of a set of model param e ters that are either
iden ti cal to or related to the phys i cal prop er ties of the
under ly ing phys i cal sys tem. Select ing the val ues of the
model param e ters that min i mize the dif fer ence between the
actual mea sure ments and those pre dicted by the for ward
model is assumed to solve the inverse prob lem. This basic
assump tion is itself rid dled with dif fi cul ties and can lead to
erro ne ous solu tions because most well log ging and geo -
phys i cal inverse prob lems are ill-posed, i.e., the solu tions
are not unique. 

The main cause of non-unique solu tions to inverse prob -
lems is that the result ing sys tem of equa tions is often
underdetermined because there are more unknowns than
inde pend ent mea sure ments. There fore, there are an infi nite
num ber of solu tions that will fit the data. More over, for
noisy data many inverse prob lems are unsta ble, i.e., small
changes in the data caused by noise fluc tu a tions can result
in large changes in the solu tion. Impos ing con di tions to
con strain the solu tion space is used to cir cum vent these
prob lems. One com monly used approach is to add a reg u lar -
iza tion (i.e., smooth ing) term to the objec tive func tion that
is min i mized when fit ting the mea sure ments to the for ward
model. Other con di tions imposed on the solu tions often
include con straints or bounds on the per mit ted range of
solu tions. The reg u lar iza tion approach in con junc tion with
the con straints selects a par tic u lar smooth solu tion out of
the infi nite num ber of solu tions that fit the data. 

The tra di tional approach has other lim i ta tions and cave -
ats that ren der it unsuit able for pro vid ing accu rate solu tions
to many prob lems of inter est. For exam ple, petrophysical
sys tems are typ i cally so com plex that accu rate for ward
mod els are not avail able. A well-known exam ple is
Archie’s equa tion, used to pre dict water sat u ra tions from
elec tri cal con duc tiv ity or resis tiv ity mea sure ments made on 
porous rocks. Archie’s equa tion con tains expo nents and
param e ters that have been observed to have a wide range of
val ues for res er voir rocks. The wide range of val ues is
caused by the com plex ity of porous rocks and can result in
water sat u ra tion pre dic tions with large errors.

There are other well-log ging prob lems for which rea son -
ably accu rate for ward mod els can be derived from the laws
of phys ics, but fit ting the for ward model to the mea sure -
ments is often computationally too expen sive for real-time
appli ca tions. They include, for exam ple, for ward mod els
for the responses of log ging tools (elec tro mag netic, sonic,
nuclear) deployed in bore holes that pen e trate mod eled
earth for ma tions of var i ous descrip tions, includ ing for ma -
tions that have dip ping beds with dif fer ent thick nesses and
phys i cal prop er ties. 

The pur pose of this paper is to intro duce a model-inde -
pend ent inver sion method that over comes many of the
afore men tioned prob lems. The new approach is based on
data and does not require a for ward model. Instead of
non-lin ear opti mi za tion it uses radial basis func tion (RBF)
inter po la tion, a numer i cal anal y sis method for approx i mat -
ing smooth and con tin u ous multivariate func tions that has
been devel oped by applied math e ma ti cians over the past 30
years. The book by M.D. Buhmann (2003) pro vides a thor -
ough descrip tion of RBF inter po la tion. The math e mat i cal
foun da tion under ly ing RBF inter po la tion is part of mod ern
approx i ma tion the ory in the field of numer i cal anal y sis
(Powell, 2001).  

Another model-inde pend ent data base approach for solv -
ing inverse prob lems uses arti fi cial neu ral net works (ANN). 
How ever, the ANN approach has draw backs. Its imple men -
ta tion is not intu itive and it requires lengthy, iter a tive train -
ing that is not guar an teed to con verge to a solu tion. In the
ANN lit er a ture, RBF neu ral net works are dis cussed. These
are three-layer neu ral net works that use RBFs in the hid den
layer (Haykin, 1999). They should not be con fused with the
RBF inter po la tion method dis cussed in this paper, i.e., the
method dis cussed here is totally inde pend ent of neu ral net -
works.

This paper intro duces RBF inter po la tion and dis cusses
how it can be applied to the solu tion of well log ging and
other geo phys i cal inverse prob lems. Then it goes on to
dem on strate the appli ca tion of the method to three impor -
tant and chal leng ing well-log ging prob lems. The first
exam ple is the pre dic tion of vis cos ity and the molec u lar
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com po si tion of crude oils from nuclear mag netic res o nance
(NMR) relax ation time mea sure ments. The sec ond exam ple 
is the pre dic tion of bore hole-cor rected sig nals from raw sig -
nals acquired with a 3D tri-axial induc tion tool. The third
exam ple is the pre dic tion of the den sity and molec u lar com -
po si tion of crude oils from near-infra red absorp tion mea -
sure ments sim i lar to those made by a for ma tion-sam ple
test ing tool. It will be clear from the exam ples and from the
the ory that the method can be applied to the inver sion of
well-log ging and geo phys i cal mea sure ments from any type
of sen sor (e.g., elec tro mag netic, acous tic, nuclear, mechan -
i cal, elec tro me chani cal, or ther mal.)

RBF INTERPOLATION

Mathematical description

Let 
r r
f x( ), 

r
x R nÎ , and 

r
f RmÎ , be a real-val ued vec tor

func tion of n vari ables, and let val ues of 
r r r
f x yi i( )=  be

given at N dis tinct points, 
r
x i . The inter po la tion prob lem is

to con struct the func tion 
r r
F x( ) that approx i mates 

r r
f x( ) and

sat is fies the inter po la tion equa tions:
r r r

KF x y i Ni i( ) , , , , .= =12 (1)

RBF inter po la tion chooses an approx i mat ing or map ping
func tion of the form

r r r r r
F x c x xi i

i

N

( ) ( ) .= -
=

å j
1

(2)

The non-lin ear func tion, j, is known as an RBF. The argu -
ment of the RBF depends on the Euclid ean norm in
n-dimen sional space; i.e., 

r r
x x x xi m i m

m

n

- = -
=

å ( ) .,
2

1

(3)

The func tions are called “radial” because they depend
only on the dis tance, not the direc tion, of 

r
x i  from an arbi -

trary input vec tor, 
r
x, at which the func tion is to be eval u -

ated. 
The real coef fi cients, 

r
ci  in equa tion (2) are deter mined

by requir ing that the inter po la tion equa tions (equa tion (1))
be sat is fied exactly. There fore, the coef fi cients are a lin ear
com bi na tion of the given func tion val ues,

r r
c yi i j j

j

N

= -

=

åF , ,1

1

(4a)

where F i j i jx x, ( )º -j
r r

 is the N N´  inter po la tion matrix. 

If the con di tion num ber of the inter po la tion matrix is large
and if the given func tion val ues are noisy, the coef fi cients
deter mined from equa tion (4a) can be unsta ble and one
should replace equa tion (4a) by the reg u lar ized solu tion
(Haykin, 1999),

r r
c I yi i,j j

j

N

= -

=

å(F + g ) ,1

1

(4b)

where I is the N N´  iden tity matrix and g is a real and pos i -
tive reg u lar iza tion param e ter.

One of the nice fea tures of RBFs is that for cer tain func -
tional forms, includ ing Gaussian, multiquadric, and inverse 
multiquadric forms, math e ma ti cians have proved that the
inter po la tion matrix is nonsingular (e.g., Micchelli, 1986).
This means that for these func tions, the map ping func tion in 
equa tion (2) is uniquely deter mined. RBF inter po la tion has
other attrac tive prop er ties not pos sessed by clas si cal inter -
po la tion schemes such as poly no mial splines or finite dif -
fer ence approx i ma tions. First, RBF inter po la tion does not
require the data to be on a uni form lat tice and has been
shown to pro vide good results with scat tered datasets
(Buhmann, 2003). Sec ond, numer i cal exper i ments have
shown the some what sur pris ing result that for a given num -
ber of data points, N, the accu racy of the inter po la tion is
inde pend ent of the num ber of inde pend ent vari ables, n,
even for very large val ues of n (Powell, 2001).

Using RBF interpolation to solve inverse problems

The pre vi ous sec tion intro duced RBF inter po la tion from
a purely math e mat i cal point of view. In this sec tion I will
dis cuss how this mod ern method for approx i mat ing func -
tions of many vari ables can be used to solve inverse prob -
lems. 

Inverse prob lems encoun tered in well log ging and geo -
phys i cal appli ca tions involve pre dict ing the phys i cal prop -
er ties of some under ly ing sys tem given a set of mea sure -
ments. Con sider a data base hav ing a set of dis tinct input
data 

r
x Ri

nÎ   (i.e., the inputs are n-dimen sional vec tors) and 

a set of cor re spond ing real out puts, 
r
y Ri

mÎ , for i N=1, ,K , 

where N is the num ber of cases in the data base. The dif fer -
ent cases in the data base rep re sent dif fer ent states of the
under ly ing phys i cal sys tem. In the math e mat i cal lan guage
of RBF inter po la tion, 

r
yi  val ues rep re sent sam ples of the

func tion that we want to approx i mate, and 
r
x i  val ues are the

dis tinct points at which the func tion is given. The data base
inputs, 

r
x i , rep re sent the mea sure ments from which we

would like to pre dict the phys i cal prop er ties of the under ly -
ing sys tem. The data base out puts, 

r
yi , are the phys i cal prop -

er ties we want to pre dict from the mea sure ments. The data -
base is used to con struct a map ping func tion such that,
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given mea sure ments 
r
x that are not in the data base, one can

pre dict the prop er ties 
r r
F x( ) of the phys i cal sys tem that is

con sis tent with the mea sure ments. The map ping func tion
solves the inverse prob lem by pre dict ing the phys i cal prop -
er ties of the sys tem from the mea sure ments. Geo met ri cally
the map ping func tion is the hypersurface that defines the
data base out puts in terms of the inputs in multi-dimen sional 
space.

It is use ful to explain the con struc tion of a data base by
giv ing an exam ple that will be dis cussed in more detail in a
sub se quent sec tion. The pro posed prob lem is to pre dict the
vis cos ity of dead crude oils from NMR mea sure ments.
NMR the ory and exper i ments both show that vis cos ity can
be pre dicted from NMR mea sure ments of relax ation times
and dif fu sion coef fi cients. How ever, the exist ing empir i cal
cor re la tions relat ing NMR mea sure ments to vis cos ity can
have large errors. RBF inter po la tion can be used to make
more accu rate pre dic tions. The data base is con structed by
acquir ing NMR mea sure ments on a suite of N oil sam ples
over a rep re sen ta tive range of vis cos i ties, tem per a tures, and 
pres sures. The inputs to the data base would be, for each oil
sam ple, a vec tor whose ele ments are the NMR data (e.g.,
the ampli tudes in a trans verse-mag ne ti za tion, relax -
ation-time dis tri bu tion or in a dif fu sion-coef fi cient dis tri bu -
tion) for that sam ple and the mea sure ment tem per a ture and
pres sure. The data base out puts are the prop er ties we wish to 
pre dict. In this exam ple, we want to pre dict vis cos ity.
There fore, the data base out puts are obtained by mea sure -
ment, using a viscometer, of the vis cos ity for each oil sam -
ple at the same tem per a ture and pres sure as the NMR mea -
sure ments. Using this data base, a radial basis map ping
func tion can be con structed so that oil vis cos ity can be pre -
dicted from NMR, tem per a ture, and pres sure mea sure -
ments. 

Clearly for this approach to work there must exist a
deter min is tic, unique, and func tional rela tion ship between
the input mea sure ments and the prop er ties one would like
to pre dict from those mea sure ments. For each 

r
x i  in the data -

base there is a unique out put, 
r
yi , as required for a sin -

gle-val ued func tion. This is obvi ous from the method of
data base con struc tion. There can, how ever, be dif fer ent
input mea sure ments in the data base that cor re spond to the
same data base out put. For exam ple, two dif fer ent crude oils 
in the data base could have iden ti cal vis cos i ties but dif fer ent 
NMR T2 dis tri bu tions. The fact that this is still a func tional
rela tion ship fol lows from the def i ni tion of a sin gle-val ued
func tion, as learned in alge bra, for which 

r
x is the inde pend -

ent vari able and 
r r
F x( ) is the depend ent vari able or func tion.

For each 
r
x there should be only one value of the func tion r r

F x( ), but dif fer ent val ues of 
r
x can cor re spond to the same

value of 
r r
F x( ). The RBF map ping func tion in equa tion (2) is 

a sin gle-val ued func tion of the inputs, 
r
x, and, there fore, it

pre dicts unique val ues for the out puts, 
r
y.  The method is

capa ble of pro vid ing accu rate results for smooth con tin u -
ous multivariate map ping func tions pro vided that the cal i -
bra tion data base is suf fi ciently well pop u lated.  Unfor tu -
nately, there are no gen eral rules or the o rems for quan ti fy -
ing the accu racy of the pre dic tions. The results are very
much prob lem depend ent, and one must rely on numer i cal
or empir i cal test ing to assess the accu racy of the pre dic tions 
for a spe cific appli ca tion and cal i bra tion data base.

Normalized Gaussian RBFs

The RBFs used in this paper are nor mal ized Gaussian
RBFs defined by the equa tion:

j( )

exp

exp

r r

r r

r rx x

x x

s

x x

s

i

i

i

j

j

- =

-
-æ

è

ç
ç

ö

ø

÷
÷

-
-æ

è

2

2

2

2

2

2

ç
ç

ö

ø

÷
÷

=

å
j

N

1

. (5)

As will become appar ent when the exam ple prob lems are 
dis cussed, one of the attrac tive fea tures of using
multivariate Gaussian func tions is that they can be writ ten
as prod ucts of univariate func tions. These func tions are
nor mal ized in the sense that the sum ma tion over the data -
base inputs, 

r
x i , is equal to unity for all 

r
x, i.e., 

j( ) .
r r
x x i

i

N

- =
=

å 1
1

(6)

It is also eas ily seen from equa tion (5) that

0 1£ - £j( ) .
r r
x x i (7)

By com bin ing equa tions (2) and (5), one can write the
map ping func tion for Gaussian RBFs as

r r

r
r r

r rF x

c
x x

s

x x

i

i

ii

N

i

( )

exp

exp

=

-
-æ

è

ç
ç
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ø

÷
÷

-
-

=

å
2

2
1

2

2

2sii

N

2
1

æ

è

ç
ç

ö

ø

÷
÷

=

å

(8)

The width, si, of the Gaussian RBF cen tered at 
r
x i  is rep -

re sen ta tive of the range or spread of the func tion in the input 
space. The opti mal widths, for accu rate approx i ma tions,
should be of the order of the near est-neigh bor (NN) dis -
tances in the input space. The idea is to pave the input space
with basis func tions that have some over lap with near est
neigh bors but neg li gi ble over lap with more dis tant neigh -
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bors. This ensures that for an input 
r
x that is not in the data -

base, the out put 
r r
F x( ) is com puted as a weighted aver age of

con tri bu tions from those data base inputs 
r
x i  that are near est

to 
r
x. The inter po la tion points in the data base that are far

from 
r
x make a neg li gi ble con tri bu tion to 

r r
F x( ). These

remarks sug gest a pro to col for deal ing with very large data -
bases where N is of the order of 106 or larger. An accept able

esti mate of 
r r
F x( ) can be obtained by con sid er ing a sub set of

the data base val ues of 
r
x i  (e.g., a few hun dred points) that

are near est to 
r
x. This works because RBF inter po la tion is a

local approx i ma tion. Thus, except for iden ti fy ing the few

hun dred points, the cost of esti mat ing 
r r
F x( ) is inde pend ent

of N. The vari ance in 
r r
F x( ) caused by ran dom uncorrelated

mea sure ment errors in 
r
x can also eas ily be com puted from

equa tion (8) (e.g., see Appen dix A of Freed man et al.,
1998).  One finds that increas ing the widths of the Gaussian

func tions reduces the vari ance in 
r r
F x( ). This is intu itive

because increased widths mean that more inter po la tion
points are used, and this leads to a more robust esti mate of r r
F x( ).

Ide ally the cal i bra tion data base of input and out put mea -
sure ments should be acquired with neg li gi ble noise. In this
paper the widths for the RBFs are deter mined heu ris ti cally
by select ing widths com pa ra ble to NN Euclid ean dis tances
sep a rat ing the input vec tors. Once the widths are selected,
the deter mi na tion of opti mal coef fi cient vec tors in equa tion
(8) is a lin ear prob lem (e.g., see equa tion (4)). The next sec -
tion dis cusses an approx i ma tion for the coef fi cient vec tors
and pro vides some intu itive insight into how the radial basis 
map ping func tion inter po lates in the data base to pre dict the
out put vec tors.

Nadaraya-Watson Regression Estimator 

An intu itive under stand ing of how the map ping func tion
in equa tion (8) pre dicts an out put vec tor for an input vec tor
not in the data base can be gained by con sid er ing the
Nadaraya-Wat son Regres sion Esti ma tor (NWRE). The
NWRE is based on a sim ple approx i ma tion for the coef fi -
cient vec tors (Haykin, 1999). The inter po la tion equa tions
for the map ping func tion in equa tion (8) can be writ ten in
the form:

r r
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r r
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(9)

The sum ma tions in equa tion (9) can be neglected if one
neglects the over lap of the data base RBFs. The NWRE
approx i ma tion assumes that the inter po la tion matrix in
equa tion (4) is diag o nal and leads to a sim ple approx i ma -
tion for the coef fi cient vec tors, such that

r r r
F x y cj j j( ) .º = (10)

This sim ple approx i ma tion replaces the coef fi cient vec -
tors in equa tion (8) with the data base out put vec tors 

r
y j . For

many prac ti cal prob lems, the NWRE approx i ma tion works
well and is always a good start ing point for test ing RBF pre -
dic tions. Com put ing the coef fi cients using equa tion (4)
pro vides a refine ment to the approx i ma tion.

By com bin ing equa tions (8) and (10), one obtains the
NWRE map ping func tion:
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Note that in the limit of very large si, 
r r
F x( ) approaches

the sam ple mean of the data base out put vec tors. In the limit

of very small si,  
r r
F x( ) approaches the out put vec tor 

v
y j  that

cor re sponds to the data base input vec tor 
r
x j  that is clos est to 

r
x. In gen eral, 

r r
F x( ) is a weighted aver age of the data base

out put vec tors with RBF weight ing fac tors deter mined by
the close ness of 

r
x to the data base input vec tors. Note that

the NWRE approx i ma tion in equa tion (11) does not sat isfy
the inter po la tion con di tions of equa tion (1).

The NWRE approx i ma tion can be improved by deter -
min ing opti mal coef fi cient vec tors such that the inter po la -
tion equa tions  are sat is fied. The prob lem is lin ear if the
widths of the Gaussian RBFs are fixed. Inter po la tion con di -
tions lead to a set of lin ear equa tions for the coef fi cient vec -
tors, whose solu tion can be writ ten in matrix form as, 

C Y= ×-F 1 , (12)

where the N ´ m matrix, C, is given by

C

c c c

c c c

c c c

m

m
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L
ê

ù

û

ú
ú
ú
ú

, (13)

where the ith row of C is the trans pose of the coef fi cient vec -
tor for the ith data base case. That is, the first sub script on
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each coef fi cient runs from 1 to N and denotes a par tic u lar
data base case and the sec ond sub script denotes a par tic u lar
ele ment of the data base out put vec tors and runs from 1 to m.

The matrix F, whose inverse appears in equa tion (12), is the 
N ´ N pos i tive def i nite matrix of Gaussian RBFs, i.e.,

F =

é

ë

ê
ê
ê

j j j

j j j

j j j
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where the matrix ele ments are the nor mal ized Gaussian
RBFs:
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The N ´ m matrix, Y, in equa tion (12) con tains the data -
base out put vec tors:

Y
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y y y

m

m

N N N m

=

é

ë

ê
ê
ê

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

L

L

M M M M

L
ê

ù

û

ú
ú
ú
ú

. (16)

Note that the ith row is the trans pose of the data base vec -
tor 

r
yi . The solu tion for the coef fi cients given in equa tions

(12-16) improve the NWRE approx i ma tion by deter min ing
opti mal coef fi cient vec tors with the caveat of hav ing fixed
widths for the Gaussian RBFs. 

APPLICATIONS TO WELL-LOGGING
INVERSE PROBLEMS

This sec tion pro vides exam ples of RBF inter po la tion
applied to three impor tant and chal leng ing well-log ging
inver sion prob lems. The first exam ple addresses the pre dic -
tion of crude oil vis cos ity and molec u lar com po si tion from
NMR mea sure ments. It has obvi ous impor tance for
downhole fluid anal y sis, which is a rap idly expand ing area
of well-log ging tech nol ogy. The sec ond exam ple addresses
the pre dic tion of bore hole-cor rected data val ues from raw
sig nals acquired with a 3D tri-axial induc tion-log ging tool.
The third exam ple addresses the pre dic tion of fluid den sity
and com po si tion from near-infra red (NIR) absorp tion mea -
sure ments like those made by NIR opti cal spec trom e ters
used in fluid-sam pling tools.

Predicting viscosity from NMR measurements

This is an exam ple of an inver sion prob lem for which an
accu rate for ward model does not exist. It is instruc tive to
first review the empir i cal cor re la tions used by the exist ing
meth ods (Freed man et al., 2001). The exist ing meth ods rely 
on the fol low ing empir i cal equa tions to esti mate vis cos ity
(h):

h=
aT

T f gorLM2, ( )
, (17)

and

h=
bT

DLM

. (18)

Equa tions (17) and (18) pro vide esti mates of vis cos ity
from NMR mea sure ments of the trans verse mag ne ti za tion
relax ation time (T2) and the dif fu sion coef fi cient dis tri bu -
tions (D), respec tively. In equa tion (17), the lon gi tu di nal
mag ne ti za tion relax ation time (T1) dis tri bu tion can be used
in place of T2. T is tem per a ture in degrees Kel vin and f(gor)
in equa tion (17) is an empir i cally deter mined func tion of
the gas/oil ratio (Freed man et al., 2001). In these equa tions
the vis cos ity esti mate is inversely pro por tional to the log a -
rith mic mean of the dis tri bu tion, i.e., T2,LM in equa tion (17)
and DLM in equa tion (18). Thus, the cor re la tions do not
account for the fact that the shapes of the dis tri bu tions can
affect the vis cos ity. Fur ther more, the empir i cal con stants, a
and b, are deter mined from “best fits” to the assumed
regres sion form for the equa tions. The empir i cal con stants
in these equa tions are not uni ver sally appro pri ate for all
crude oils, and the vari ance in these con stants can cause sig -
nif i cant errors in esti mated vis cos i ties. Another short com -
ing of these cor re la tions is that they do not account for the
effects of pres sure (Winkler et al., 2004). 

The pre dic tion of vis cos ity from NMR mea sure ments
using RBF inter po la tion can be viewed as con struct ing the
non lin ear map ping from a vec tor input (e.g., ampli tudes in a 
T1, T2, or D dis tri bu tion) to a sca lar out put (vis cos ity), given 
a suite of input-out put exam ples. The fol low ing dis cus sion
uses T2 dis tri bu tions to illus trate the tech nique with the
under stand ing that the same meth od ol ogy works for D and
T1 dis tri bu tions. Raw spin-echo mea sure ments can also be
used since the lat ter con tain the same infor ma tion as the
quan ti ties derived from them. Con sider a data base of N
input-out put pairs in which inputs for each live-oil sam ple

con sist of T2-dis tri bu tion ampli tudes (
r
A), tem per a tures (Ti),

pres sures (Pi), gas/oil ratios (gori) and cor re spond ing out -
put vis cos i ties (hi). The vis cos ity of a crude oil sam ple not
in the data base can be pre dicted using the fol low ing RBF
map ping func tion:
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The vis cos ity of a live crude oil that is not in the data base 
can be pre dicted using equa tion (19) and the mea sured

inputs 
r
A, T,  P, and gor. Note that the mea sured inputs can be 

sep a rated in the RBFs because of the factorizability of
Gaussian func tions. For sim plic ity, a sin gle width was
assigned to the Gaussian func tions con tain ing T, P, and gor.
A bore hole fluid-sam pling tool equipped with pres sure and
tem per a ture sen sors and an NMR sen sor could pro vide the
mea sure ments needed to pre dict vis cos ity using equa tion
(19). The gas/oil ratio is attain able if the sam pling tool is
also equipped with opti cal sen sors for mea sur ing the opti cal 
den sity of the crude oil as a func tion of wave length in the
NIR region (Fujisawa et al., 2003). The accu racy of the pre -
dic tions made by equa tion (19) relies on a data base with a
large, diverse pop u la tion of live-oil mea sure ments. Note
that only the T2-dis tri bu tion ampli tudes, not the relax ation
times, appear in equa tion (19). The map ping func tion does
not depend on the relax ation times, pro vided that all of the
ampli tudes in the equa tion span the same range of T2 val ues. 
The max i mum ampli tude of the T2 dis tri bu tions was nor -
mal ized to unity prior to con struct ing the map ping func tion. 
This step insures that ampli tude dif fer ences caused by hard -
ware or soft ware cal i bra tions are removed by the nor mal -
iza tion. Equa tion (19) is readily gen er al ized if the data base
also includes other mea sure ments. For exam ple, if in addi -
tion to the T2-dis tri bu tion ampli tudes the data base includes
D and T1 dis tri bu tions, the ampli tude vec tors for these mea -
sure ments would appear as addi tional Gaussian fac tors in
equa tion (19). 

Vis cos ity pre dic tion using equa tion (19) was tested
using a small data base of T2 dis tri bu tions and cor re spond -
ing mea sured vis cos i ties acquired on a suite of 16 dead (i.e., 
gor = 0) crude oil sam ples at a tem per a ture of 30°C at atmo -
spheric pres sure. Mea sured vis cos i ties are shown in Table 1 
and mea sured T2 dis tri bu tions are shown in Fig ure 1. The
vis cos ity was mea sured for each sam ple using a lab o ra tory
Brookfield Couette-type viscometer with an abso lute accu -
racy of better than five per cent.

Observe that although sam ples 10 and 13 in Fig ure 1
have vir tu ally iden ti cal vis cos i ties their T2 dis tri bu tions
have quite dif fer ent log mean val ues. Note that sam ple
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FIG. 1 Data base con sist ing of T2 dis tri bu tions and mea sured
vis cos i ties for 16 dead crude oils.
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TABLE 1 Mea sured Viscosities of 16 Dead Crude Oils

Sam ple Measured Viscosity (cp)

1 6.30
2 13.9
3 16.4
4 746.0
5 5.09
6 6.36
7 6.52
8 656.0
9 5.42

10 8.47
11 980.0
12 15.5
13 8.46
14 116.0
15 132.0
16 91.2



num bers are shown in the upper right cor ner on each plot.
Spe cif i cally, sam ple 10 has a log mean value of 174 ms,
whereas sam ple 13 has a log mean value of 279 ms. This
clearly shows the inad e quacy of the empir i cal cor re la tion in 
equa tion (17), which would pre dict vis cos i ties that dif fer by 
a fac tor of 1.6. Fig ure 2 shows the vis cos i ties pre dicted
from the T2 dis tri bu tions using the radial basis map ping
func tion,
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appro pri ate for a data base of 16 dead oils all mea sured at the 
same tem per a ture and pres sure. The results in Fig ure 2 were
obtained using the “leave-one-out method” whereby each
sam ple was removed from the data base and its vis cos ity was 
pre dicted from the remain ing 15 sam ples in the data base.
The vis cos i ties pre dicted from the T2 dis tri bu tions using
equa tion (20) are in very good agree ment with the vis cos i -
ties mea sured in the lab o ra tory. In my view, this result is
impres sive given the rel a tively small size of the data base.
The pre dicted vis cos i ties shown in Fig ure 2 were obtained

by choos ing fixed widths for the Gaussian func tions, i.e., sj

= 0.1, 0.5, 1.0, and 5.0. For this data base, the pre dicted vis -
cos i ties are accu rate and show lit tle sen si tiv ity to the width
for fixed val ues selected in the range from about 0.05 to
0.85.

As seen in Fig ure 2, if the widths are increased beyond
0.85 then the errors in the pre dicted vis cos i ties start to
increase grad u ally and even tu ally, as expected, all of the
pre dicted vis cos i ties approach the mean of the data base
out put val ues. These obser va tions are con sis tent with the
intu itive notion that the opti mal widths should be of the
order of the NN dis tances in the input space. Table 2 shows
the Euclid ean NN dis tances for the T2 dis tri bu tions in the
data base. The NN dis tances pro vide a good start ing point
for choos ing the widths. In this exam ple, choos ing the
Gaussian widths to be of the order of the NN dis tance pro -
vides accu rate pre dic tions. The coef fi cients in equa tion
(20) were com puted using two meth ods: (1) the NWRE
approx i ma tion was used to replace the coef fi cients with the
data base out puts (i.e., the lab o ra tory-mea sured vis cos i ties)
and (2) the coef fi cients were com puted from the inter po la -
tion equa tions. The NWRE approx i ma tion pro vided good
results; in this case, very lit tle if any improve ment was
achieved by com put ing the coef fi cients.

The vis cos i ties of the sam ples in Table 1 were also esti -
mated from the log mean val ues of the T2 dis tri bu tions
shown in Fig ure 1. A value of a = 9.558 was used for the
cor re la tion param e ter in equa tion (17). In the lit er a ture, a
range of a val ues (from 4.0 to 9.558) has been cited for
crude oils. This large spread in cor re la tion param e ters leads
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FIG. 2 Vis cos i ties pre dicted from NMR T2 dis tri bu tions com -
pared to lab o ra tory-mea sured vis cos i ties. The pre dicted vis cos -
i ties in the four sub plots above are com puted using the val ues
shown on the graphs for the widths of the Gaussian func tions.
The pre dicted vis cos i ties are accu rate and insen si tive to the
width of the Gaussian func tions for a range of val ues from about
0.05 to 0.85.

TABLE 2 Near est Neighbor (NN) Dis tances

Sample No. NN Dis tances

1 0.39
2 0.24
3 0.24
4 0.35
5 0.58
6 0.39
7 0.31
8 0.31
9 0.40

10 0.65
11 0.31
12 0.66
13 0.31
14 0.26
15 0.26
16 0.46



to uncer tain ties with a fac tor of two for vis cos i ties pre dicted 
from the log mean val ues of crude-oil T2 dis tri bu tions. Fig -
ure 3 shows vis cos ity val ues pre dicted from the log mean
val ues com pared to the mea sured vis cos ity val ues. One can
see from Fig ures 2 and 3 that the RBF pre dicted vis cos i ties
are in much better agree ment with the mea sured vis cos i ties
than are those pre dicted from the log mean val ues. The
agree ment between pre dicted and mea sured vis cos i ties for
the lower vis cos ity range in Fig ure 3 can be improved by
reduc ing the value of the param e ter, a, used in equa tion
(17). How ever, this causes poorer agree ments at the
higher-vis cos ity range. The real advan tage of the RBF
method is that there are no model-depend ent param e ters
and that the method lends itself to mea sure ments made on
live oils at ele vated tem per a tures and pres sures.

Predicting the molecular composition of crude oils from
NMR measurements

It is well estab lished that NMR mea sure ments of relax -
ation time and dif fu sion coef fi cient dis tri bu tions pro vide
infor ma tion about the molec u lar com po si tion of crude oils
(Freed man et al., 2001). Pre vi ous work on pre dict ing com -
po si tion from NMR mea sure ments attempted to derive
phys ics-based mod els that relate com po si tion to relax ation
time and molec u lar dif fu sion coef fi cient dis tri bu tions
(Freed, 2004; Heaton and Freed man, 2005). The der i va tion
of accu rate phys ics-based mod els is dif fi cult because crude
oils are com plex mix tures con tain ing hydro car bon mol e -
cules with a wide range of shapes, weights, and sizes. This

prob lem is exactly the kind of prob lem for which RBF inter -
po la tion offers an ele gant model-inde pend ent method of
solu tion. The pre dic tion of com po si tion was tested on the
same data base of 16 dead crude oils used above for the pre -
dic tion of vis cos ity. For the pre dic tion of com po si tion, the
data base inputs are the T2 dis tri bu tions shown in Figure 1,
and the out puts are the cor re spond ing com po si tions, which
were mea sured in the lab o ra tory using gas chro ma tog ra phy.

The radial basis map ping func tion for pre dict ing
crude-oil molec u lar com po si tion is sim i lar to the one used
for pre dict ing vis cos ity except that the map ping func tion
and the coef fi cients are both m-dimen sional vec tors, where
m is the num ber of con stit u ents in the com po si tions mea -
sured by the gas chro ma tog ra phy. The com po si tions mea -
sured for the data base oil sam ples con sisted of the molar
frac tions for car bon num bers C-1 through C-29 and C-30+.
The com po si tions pre dicted from the T2 dis tri bu tions using
RBFs are shown in Fig ure 4. The NWRE approx i ma tion
was used for the coef fi cient vec tors. Pre dic tions were
essen tially insen si tive to the widths of the RBFs over a
range of width val ues from approx i mately 0.1 to 1.0. Note
the good agree ment between the pre dicted com po si tions
and those mea sured by gas chro ma tog ra phy. This agree -
ment is espe cially impres sive because of the rel a tively
small size of the data base. Com po si tion was pre dicted for
each of the 16 sam ples by sequen tially remov ing that sam -
ple from the data base and then using the remain ing 15 sam -
ples to con struct the map ping func tion. The poorer pre dic -
tions for the three most vis cous sam ples in the data base are
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FIG. 3 Vis cos i ties pre dicted from the log mean value of the
NMR T2 dis tri bu tions using equa tion (17) com pared to lab o ra -
tory-mea sured vis cos i ties.

FIG. 4 Com par i son of com po si tions pre dicted from T2 dis tri bu -
tions using RBFs with those mea sured in the lab o ra tory using
gas chro ma tog ra phy (GC).



explained by the fact that there are only three vis cous oils in 
the data base.

Predicting borehole corrections for a 3D induction tool

The pre vi ous sec tions showed how RBF inter po la tion
could be applied to pre dict res er voir fluid prop er ties from
NMR mea sure ments. The fol low ing sec tions show how
RBF inter po la tion could be applied for pre dict ing bore hole
cor rec tions for mea sure ments acquired with a 3D induc tion
tool.

Description of the 3D induction tool 
borehole-correction problem

This appli ca tion of RBFs shows how they can be used to
cor rect the 3D tri-axial induc tion tool mea sure ments for
bore hole effects. The same approach can be used to cor rect
other types of open- and cased hole log ging tool mea sure -
ments (e.g., resis tiv ity, sonic, nuclear) for bore hole effects.

The 3D induc tion tool pro vides an espe cially good
exam ple of the power of RBF inter po la tion as a tool for
solv ing dif fi cult inverse prob lems because of the com plex -
ity and mag ni tude of the bore hole effects on the tool
response. The 3D induc tion tool acquires 234 sig nals at
each sam pling inter val in the bore hole; this large num ber of
sig nals increases the degree of dif fi culty for bore hole-cor -
rec tion prob lems.

Trans verse mag netic dipole (TMD) trans mit ter coils
induce axial bore hole cur rents that pro duce receiver sig nals 
with very large bore hole effects. This is why cor rect ing the
3D induc tion tool sig nals for bore hole effects is chal leng -
ing. TMD trans mit ter coils can excite long-range lon gi tu di -
nal (i.e., axial) cur rents in the bore hole and these can induc -
tively cou ple strongly with the receiver coils. By con trast,
con ven tional induc tion tools have lon gi tu di nally-ori ented
trans mit ter and receiver coils that pro duce bore hole and
for ma tion cur rents that flow in planes trans verse to the axial 
or bore hole direc tion. There fore, the receiver sig nals they
excite have smaller bore hole sig nals by com par i son.

The 3D induc tion tool is designed to exhibit azi muthal,
radial, and axial sen si tiv ity so that the mea sured sig nals are
sen si tive to the con duc tiv ity ani so tropy and the radial and
axial con duc tiv ity dis tri bu tions of the earth for ma tions pen -
e trated by the bore hole. An exper i men tal ver sion of the 3D
induc tion tool was dis cussed at a recent SPE meet ing (Bar -
ber et al., 2004). In a Car te sian coor di nate sys tem fixed in
the log ging sonde, the axial direc tion is par al lel to the direc -
tion of the sonde axis (i.e., par al lel to the bore hole). Mul ti -
ple depths of inves ti ga tion are achieved by employ ing nine
receiv ers spa tially sep a rated in the axial direc tion from the
trans mit ter. Each antenna coil has an asso ci ated mag -
netic-dipole-moment vec tor whose mag ni tude is pro por -

tional to the prod uct of the cross-sec tional area of the coil
and the ampli tude of the elec tri cal cur rent in the coil. The
direc tion of the mag netic-moment vec tor is nor mal to the
plane of the coil. Direc tional sen si tiv ity to the for ma tion
con duc tiv ity dis tri bu tion is achieved with anten nas whose
mag netic dipole moments are ori ented in both the lon gi tu di -
nal (i.e., axial direc tion) and trans verse direc tions. 

The nine trans mit ter-receiver spac ings included in the
3D induc tion tool are 6, 9, 12, 15, 21, 27, 39, 54, and 72
inches. The trans mit ter con sists of a tri-axial antenna (e.g.,
sole noi dal coils with dipole moments in the lon gi tu di nal
and two orthogo nal trans verse direc tions). The short-spac -
ing receiv ers, located at 6, 9, and 12 inches from the trans -
mit ter, each have a sin gle lon gi tu di nally ori ented antenna,
whereas the six remain ing receiv ers are tri-axial. The
short-spac ing receiv ers acquire sig nals at a sin gle fre -
quency (26 kHz), whereas the six other receiv ers acquire
sig nals at two fre quen cies (13 and 26 kHz). Each of the
receiv ers in the 3D induc tion tool is a mutu ally bal anced
pair. In induc tion log ging tools, the trans mit ter is ener gized
by an alter nat ing cur rent that induces alter nat ing cur rents in 
the con duc tive for ma tion and the bore hole sur round ing the
log ging sonde. The cur rents induce volt ages in the receiver
coils that are in-phase (i.e., resis tive) and 90° out-of-phase
(i.e., reac tive) with respect to the trans mit ter cur rent. The
in-phase com po nent is called the R-sig nal and the
out-of-phase com po nent is called the X-sig nal. A
phase-sen si tive detec tor is used to mea sure both com po -
nents. A com plex or phasor volt age can rep re sent the R- and 
X-chan nel sig nals. How ever, this paper con sid ers only real
sig nals. There fore, the num ber of dis tinct mea sured sig nals
is dou bled com pared to the num ber of com plex sig nals. The 
set of mea sured receiver volt ages are sen si tive to for ma tion
con duc tiv ity ani so tropy, to the radial and axial dis tri bu tions 
of for ma tion con duc tiv ity, and to the bore hole sig nal. 

The bore hole sig nal for each data chan nel depends in a
non lin ear and com plex fash ion on numer ous quan ti ties
inc lud ing:  bore  hole  radius,  mud con duc  t iv  i ty,
near-wellbore for ma tion con duc tiv ity, for ma tion con duc -
tiv ity ani so tropy fac tor, and tool posi tion or stand off for an
eccentered tool. Bore hole effects may also depend on the
direc tion of the ani so tropy in a dip ping for ma tion or devi -
ated wellbore. 

If all of the afore men tioned param e ters upon which the
bore hole sig nal depends were known dur ing log ging oper a -
tions, a for ward model con sist ing of a for ma tion pen e trated
by a bore hole could be used to invert the 3D induc tion tool
raw mea sure ments and deter mine the for ma tion elec tri cal
prop er ties. This approach is not prac ti cal because some of
the param e ters upon which the bore hole effect depends are
typ i cally either not known (e.g., con duc tiv ity ani so tropy,
stand off) or only known approx i mately. Alter na tively, an
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inver sion can be used to deter mine both bore hole and for -
ma tion prop er ties. The lat ter approach is not prac ti cal
because the com pu ta tions are too elab o rate to be per formed
in real time dur ing log ging oper a tions. 

It will be shown that the RBF inter po la tion can be used
to cor rect the 3D induc tion tool raw tool mea sure ments for
bore hole effects with out hav ing knowl edge of the bore hole
param e ters. In the pro cess, it will be shown that a very dif fi -
cult and pos si bly unsta ble inverse prob lem can be reduced
to a rel a tively sim ple esti ma tion prob lem.

Construction of the database and RBF mapping function

The 3D induc tion tool mea sures 234 raw volt ages that
are induced in the receiver coils. After apply ing downhole
elec tronic cal i bra tions and gain cor rec tions, the mea sured
volt ages are con verted to fully cal i brated raw appar ent con -
duc tiv i ties. It is the mea sured, raw, appar ent con duc tiv i ties
that must be bore hole cor rected before fur ther data pro cess -
ing is per formed to esti mate for ma tion con duc tiv ity dis tri -
bu tions. 

A data base of raw (i.e., not cor rected for bore hole
effects) appar ent con duc tiv i ties, 

r
s a i

raw
,

( )  for i N=12, , ,K , can

be com puted by solv ing Maxwell’s equa tions for the 3D

induc tion tool in bore holes with radii (ri), stand offs (
r
di ),

and mud con duc tiv i ties (sm i, ) which pen e trate for ma tions
with ver ti cal (sv i, ) and hor i zon tal (s h i, ) con duc tiv i ties. Note 
that the data base includes tool eccentering (stand off) in dif -
fer ent direc tions. The mod eled data base cases are for infi -
nitely homo ge neous and “trans versely anisotropic” media
for which the hor i zon tal con duc tiv i ties in the planes per -
pen dic u lar to the bore hole are dif fer ent from the ver ti cal
con duc tiv i ties in the planes par al lel to the bore hole. The
ani so tropy param e ter for a trans versely anisotropic for ma -
tion is defined by 

l
s

s
a

h

v

= . (21)

The com po nents of the raw appar ent con duc tiv ity vec -
tors,  

r
s a i

raw
,

( ) , are the R- and X-chan nel appar ent con duc tiv i -

ties deter mined either from all or from a sub set of the 234
trans mit ter-receiver cou plings mea sured by the tool. The N
data base cases cor re spond to choos ing dif fer ent val ues for
the three bore hole param e ters and two for ma tion param e -
ters in the model. These param e ters should each be selected
to span a set of phys i cally fea si ble val ues.

Bore hole-cor rected appar ent con duc tiv i ties, 
r
s a i

c
,

( ) , for 

i N=12, , ,K  , can be com puted by solv ing Maxwell’s equa -
tions for the 3D induc tion tool in an infi nite trans versely
anisotropic homo ge neous medium (e.g., with out a bore -
hole). From the raw and bore hole-cor rected appar ent con -

duc tiv i ties one can com pute a bore hole cor rec tion, D
r
sa i, ,

which by def i ni tion is given by

D
r r r
s s sa i a i

raw
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c
, ,
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,

( ) .º - (22)

The RBF map ping func tion for pre dict ing the 234 bore -
hole-cor rected 3D induc tion sig nals can be writ ten in the
form,
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The coef fi cient vec tors, 
r
ci , can be deter mined from equa -

tions sim i lar to equa tions (12) through (16). Equa tion (23)
can be used to pre dict bore hole-cor rected data directly from 
the raw 3D induc tion sig nals with out hav ing to know the six 
param e ters on which the bore hole effect depends (i.e., bore -
hole radius, con duc tiv ity ani so tropy, stand off, direc tion of
stand off, bore hole fluid con duc tiv ity, and near-wellbore
for ma tion con duc tiv ity). If desired, one can also use the
data base to con struct an RBF map ping func tion to pre dict
the afore men tioned param e ters from the raw tool mea sure -
ments (or like wise, con struct a map ping func tion to pre dict
the bore hole cor rec tion defined in equa tion 22). How ever,
the beauty of the RBF approach for solv ing the bore hole
cor rec tion prob lem is that knowl edge of these param e ters is
not required in the esti ma tion.

Testing the borehole corrections using a database

To dem on strate use of RBF inter po la tion to bore hole
cor rect raw 3D induc tion tool mea sure ments, I con structed
a sparsely pop u lated data base of 3D raw induc tion tool
responses for the 234 data chan nels. The data base was con -
structed using five val ues of sm, six val ues of sh, three val -
ues of ani so tropy param e ter (la), four bore hole radii, and
three val ues of tool stand off. The stand off direc tion for the
data base is par al lel to the x-direc tion. Raw tool responses
rep re sent the data base inputs and the ani so tropy param e ter
is defined in equa tion (21). Induc tion tool responses for the
234 data chan nels were also com puted for the same for ma -
tion param e ters with out the pres ence of a bore hole. These
rep re sent the homo ge neous medium responses and are the
data base out puts. After remov ing dupli cate cases and cases
that were not con sid ered to be within the phys i cal lim its of
the tool or for ma tion param e ters, I tested the reduced data -
base, which con sisted of 916 cases. Each test involved
remov ing a sam ple (i.e., a case) from the data base and then
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using equa tion (23) to pre dict the bore hole-cor rected
responses for the 234 data chan nels of the 3D induc tion
tool. The coef fi cients used in equa tion (23) were com puted
from the data base inter po la tion equa tions. Widths (sj) used
in equa tion (23) were com puted from the near est neigh bor
dis tances (NNj) of the input mea sure ments. For the results
shown here, widths were heu ris ti cally com puted using the
equa tion

s NNj j=02. * . (24)

Bore hole-cor rected data pre dicted from equa tion (23)
were com pared to the homo ge neous media (i.e., the data -
base for ma tions with out a bore hole) tool responses for all
234 data chan nels. In the vast major ity of cases, the agree -
ment between the pre dicted bore hole cor rec tions and the
tar get (i.e., the homo ge neous medium responses) responses
was within four or more dec i mal places. The near est neigh -
bor dis tances for the 916 raw input mea sure ments var ied
widely from a min i mum dis tance of 0.32 mmhos to a max i -
mum dis tance of 1241 mmhos. This is clearly a case where
using a sin gle width for the RBF widths would be incor rect.
For the raw-mea sure ment input vec tors in equa tion (23),
only a sub set con sist ing of 177 of the 234 data chan nels was 
used. The 117 R-chan nel sig nals were all used, but only 60
X-chan nel sig nals were used in the esti ma tion. This is a nice 
fea ture of the method, because it allows one to exclude data
that might be cor rupted by noise or other fac tors. In the

exam ples shown here, input raw mea sure ments are
assumed accu rate. How ever, some of the data were
excluded to empha size the point that all of the 3D induc tion
tool raw mea sure ment chan nels are not needed to per form
the bore hole cor rec tions. 

Some typ i cal results are shown in Fig ures 5 through 11
for a few cases picked at ran dom from the data base. The
raw and bore hole-cor rected con duc tiv i ties in the plots are
in units of mmhos. Note that the 117 R-chan nel results are
shown in the plots except for Fig ure 8 in which X-chan nel
results are shown. The X-chan nel results are not dis played
to save space because wher ever the R-chan nel bore hole
corrections agree with their tar get responses, the X-chan nel
responses agree equally well with their tar get responses (e.g., 
Fig ures 7 and 8). Note that in Fig ures 5-7 and 9-11, the non -
zero val ues of the 117 bore hole-cor rected appar ent con duc -
tiv i ties are the 39 diag o nal (e.g., sxx, syy, szz) R-chan nel cou -
plings. In Fig ure 8, the non zero bore hole-cor rected appar ent
con duc tiv i ties are the 39 diag o nal X-chan nel tool cou plings.
The off-diag o nal cou plings are all cor rectly pre dicted to be
zero, as expected for the tool response in a homo ge neous
medium. In gen eral, off-diag o nal cou plings are non zero only 
if azi muthal sym me try is bro ken, for exam ple, by ver ti cal
frac tures, dip ping beds, or tool stand off.

One of the exam ples, shown in Fig ure 10, pro vides
insight into how RBF inter po la tion would fail if the under -
ly ing data base were not ade quately pop u lated. Data base
sam ple no. 25 rep re sents one of the extreme cases in the
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FIG. 5 Com par i son of the 117 pre dicted bore hole-cor rected
R-chan nels to the tar get (no bore hole) tool responses for data -
base sam ple no. 1. The pre dicted (x-marks) and tar get (dia -
monds) responses agree to four or more dec i mal places and
can not be dis tin guished from one another in the plot. Only the
39 diag o nal R-chan nel cou plings are non zero as expected.

FIG. 6 Com par i son of the 117 pre dicted bore hole-cor rected
R-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 10. The pre dicted (x-marks) and tar get
(dia monds) responses agree to four or more dec i mal places and 
can not be dis tin guished from one another in the plot. Only the
39 diag o nal R-chan nel cou plings are non zero as expected.
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FIG. 7 Com par i son of the 117 pre dicted bore hole-cor rected
R-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 15. The pre dicted (x-marks) and tar get
(dia monds) responses agree to four or more dec i mal places and 
can not be dis tin guished from one another in the plot. Only the
39 diag o nal R-chan nel cou plings are non zero as expected.

FIG. 8 Com par i son of the 117 pre dicted bore hole-cor rected
X-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 15. The pre dicted (x-marks) and tar get
(dia monds) responses agree to four or more dec i mal places and 
can not be dis tin guished from one another in the plot. Only the
39 diag o nal X-chan nel cou plings are non zero as expected.

FIG. 9 Com par i son of the 117 pre dicted bore hole-cor rected
X-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 21. The pre dicted (x-marks) and tar get
(dia monds) responses agree to 4 or more dec i mal places and
can not be dis tin guished from one another in the plot. Only the
39 diag o nal R-chan nel cou plings are non zero as expected.

FIG. 10 Com par i son of the 117 pre dicted bore hole-cor rected
R-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 25. The pre dicted diag o nal R-chan nel
cou plings do not agree with the tar get responses because the
data base is too sparsely pop u lated as dis cussed in the text.
This can be cor rected by add ing a few sam ples to the data base
that are sim i lar to sam ple 25. For exam ple, these would have
bore hole param e ters iden ti cal to sam ple no. 25 and for ma tion
con duc tiv ity val ues close to and both above and below 0.001
mhos.



data base. For this case, the bore hole and for ma tion param e -
ters are: sm = 100 mhos, sh = 0.001 mhos, sv = 0.001 mhos,
and the bore hole radius is 3 inches. The tool was cen tered in 
the bore hole (i.e., s = 0). To com pute the bore hole-cor rected 
tool responses, case no. 25 was removed from the data base
and the remain ing 915 sam ples in the data base were used in
equa tion (23) to pre dict the bore hole cor rec tions. The
“near est” sam ple in the data base is sam ple no. 26 which has
iden ti cal bore hole param e ters to sam ple no. 25 but has dif -
fer ent for ma tion prop er ties; e.g., sh = 0.01 mhos and sv =
0.01 mhos. As expected, the bore hole-cor rected pre dic tions 
for sam ple no. 25 are close to 0.01 mhos because sam ple no. 
26 makes the dom i nant con tri bu tion to the sum ma tion in
equa tion 23. To cor rect this prob lem, one must increase the
num ber of sam ples in the data base. The addi tional sam ples
would have the same bore hole param e ters as sam ple no. 25
but would include sam ples with lower for ma tion con duc tiv -
i ties; e.g., sam ples with con duc tiv ity val ues close to and
above and below 0.001 mhos. 

Fig ure 11 shows esti ma tion results for a data base case
with a large value for tool stand off par al lel to the x-direc -
tion. When the stand off is in the x-direc tion, raw tool mea -
sure ments have non zero val ues for the off-diag o nal cou -
plings, sxz and szx (the other four off-diag o nal cou plings are

zero). For the exam ple shown in Fig ure 11, only the 39
diag o nal R-chan nel cou plings are non zero, all the off-diag -
o nal cou plings are zero for the bore hole-cor rected data, as
they should be for an anisotropic, homo ge neous medium
with out a bore hole. This last exam ple is par tic u larly
impres sive because of the accu rate removal of the large
bore hole effects on the off-diag o nal raw mea sure ments.

Predicting density and composition from NIR 
absorption measurements

This sec tion con sid ers mass den sity and molec u lar
compositional infor ma tion pre dicted from NIR absorp tion
mea sure ments on live crude oils. The data base con sisted of
14 live crude oils on which NIR absorp tion ver sus wave -
length, gas/oil ratios, gas chro ma tog ra phy com po si tion
from C-1 to C-7+, and lab o ra tory den sity mea sure ments
were avail able. Unfor tu nately, the tem per a tures and pres -
sures at which the NIR mea sure ments were per formed were
not avail able. Although this lack of data some what com pro -
mises the anal y sis, results are nev er the less encour ag ing.
One of the moti va tions for apply ing RBF inter po la tion to
the inver sion of NIR data is that cur rent inver sion meth ods
are based on Beer’s law, which is not strictly appli ca ble to
fluid mix tures. The hope is that it might be pos si ble to
extract more and better fluid prop erty infor ma tion from
NIR data using RBF inter po la tion than is pos si ble with con -
ven tional meth ods.

Stan dard chemometric mod els and solu tions (e.g., prin -
ci pal com po nent anal y sis) based on Beer’s law are used to
pre dict com po si tions and gas/oil ratios of res er voir flu ids
from NIR absorp tion mea sure ments made by for ma tion
fluid sam pling tools. This appli ca tion has been dis cussed in
numer ous papers. A recently pub lished Soci ety of Petro -
leum Engi neers (SPE) paper on this sub ject (Fujisawa et al., 
2003) dis cussed the appli ca tion of prin ci pal com po nent
anal y sis to invert mod els based on Beer’s law and shows
that weight per cent ages of molec u lar spe cies with car bon
num bers C-1 (meth ane), C-2 to C-5 (eth ane through
pentane), C-6+ (hex ane plus heavier com po nents) and CO2

(car bon diox ide) could be pre dicted from downhole NIR
absorp tion mea sure ments. 

It is instruc tive to dis cuss Beer’s law and its lim i ta tions.
Let wide band NIR radi a tion be inci dent upon a fluid sam -
ple. The absorbance (also known as the opti cal den sity) at
wave length, l, of the sam ple is given by

A
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where Io and I are the inci dent and trans mit ted power of a
beam of radi a tion that has tra versed l cen ti me ters of a homo -

106 PETROPHYSICS April 2006

Freedman

FIG. 11 Com par i son of the 117 pre dicted bore hole-cor rected
R-chan nels with the tar get (no bore hole) tool responses for
data base sam ple no. 900. The excel lent agree ment with sam ple 
no. 900 for which there is a large stand off is impres sive because 
of the large bore hole effects on the raw mea sure ments. The
large stand off, which is in the x-direc tion for the data base cases, 
pro duces large val ues of raw off-diag o nal cou plings, i.e., sxz and 
szx. The non zero bore hole-cor rected responses are the 39
R-chan nel diag o nal cou plings as expected. The large off-diag o -
nal cou plings on the raw mea sure ments have been removed
from the bore hole-cor rected sig nals as required.



ge neous absorb ing medium that con tains c moles per liter of
an absorb ing sub stance with molar absorp tivity equal to a.
The equal ity on the right-hand side of equa tion (25) is
known as Beer’s law.

Note that the opti cal den sity is always ³0. An opti cal
den sity equal to zero indi cates that the sam ple is totally
nonabsorbing. An opti cal den sity equal to 1.0 indi cates that
90% of the inci dent energy is absorbed, 2.0 means that 99%
is absorbed, etc. NIR spec trom e ters usu ally mea sure the
absorbance as a func tion of wave length in the range from
approx i mately 700 to 2,500 nm. Some spec trom e ters mea -
sure the reflected radi a tion. 

The chem is try text book by Skoog and West (1976) pres -
ents a clear der i va tion and dis cus sion of Beer’s law and its
lim i ta tions. Chemometric mod els for pre dict ing com po si -
tion of mix tures that are based on Beer’s law assume that
the absorp tion of radi a tion by a com plex mix ture is equal to
the sum of the absorp tions that would be mea sured on the
indi vid ual con stit u ents of the mix ture (Heise and Winzen,
2002). This assump tion ignores the fact that the absorp tion
mea sured in a mix ture can dif fer from the sum of the indi -
vid ual com po nent absorp tions because molec u lar inter ac -
tions between dif fer ent con stit u ents in the mix ture are
non-lin ear. 

NIR spectra of hydrocarbons

NIR radi a tion occu pies that part of the elec tro mag netic
(EM) spec trum in the wave length range from approx i -
mately 800 nanometers (nm) to 2,500 nm. The adja cent
region of the spec trum at lon ger wave lengths from approx i -
mately 2,500 nm to 25,000 nm is called the mid-infra red
(MIR) range. The energy of the radi a tion in the MIR part of
the EM spec trum cor re sponds to fun da men tal mode exci ta -
tions of molec u lar vibra tions. Fun da men tal mode exci ta -
tions are those from the ground state to the first excited
level. For a polyatomic mol e cule with N atoms there are
3N-6 (3N-5 for a lin ear mol e cule) nor mal modes or fun da -
men tal vibra tion fre quen cies cor re spond ing to var i ous
stretch ing, bend ing, and rock ing modes. 

The absorp tion peaks observed in the NIR part of the
spec trum for res er voir flu ids cor re spond to exci ta tions from 
the ground state to the sec ond or third excited states. These
absorp tions are called first and sec ond over tones. The sec -
ond over tone mode has lower prob a bil ity of exci ta tion and,
there fore, is less intense than the first over tone mode. Other
absorp tion peaks known as com bi na tion modes are also
observed in the NIR region. Com bi na tions are usu ally
caused by the exci ta tion of a C-H stretch ing mode plus one
or more bendings or rock ing modes. Many dif fer ent com bi -
na tion modes can be excited which con trib ute to the rich -
ness and com plex ity of the NIR region.

In the NIR region, the absorp tion spec tra of hydro car -

bons are broader and have lower opti cal den si ties (i.e., are
more trans par ent) than in the MIR region. As a result, the
asso ci a tion of peaks and struc ture in an NIR-absorp tion
spec tra with spe cific func tional groups or mol e cules is less
straight for ward than for MIR spec tra. 

A paper by L. G. Weyer (1985) dis cusses, among other
things, the NIR spec tra of aliphatic and aro matic hydro car -
bons. It is use ful to sum ma rize briefly some of the infor ma -
tion in this paper. The first over tones of the C-H stretch
mode for aliphatic hydro car bons are found in the wave -
length range from approx i mately 1,600 to 1,800 nm, and
the sec ond over tones are in the range from approx i mately
1,100 to 1,250 nm. The first com bi na tion bands for
aliphatic hydro car bons are observed in the wave length
range between 2,000 and 2,400 nm, and a sec ond weaker
band is observed from approx i mately 1,300 to 1,450 nm.
For aro matic hydro car bons the first over tone of the C-H
stretch mode occurs at approx i mately 1,685 nm, and the
sec ond over tone occurs at approx i mately 1,143 nm. Com bi -
na tion bands are found at approx i mately 2150 and 2460 nm
with much weaker bands at 1,420 to 1,450 nm. Water has an 
O-H stretch first over tone at approx i mately 1,440 nm, a sec -
ond over tone at approx i mately 960 nm, and an intense com -
bi na tion band from approx i mately 1,960 to 2,100 nm.

Prediction of density and composition 

The use of RBF inter po la tion to pre dict res er voir fluid
prop er ties from NIR spec tros copy involves a straight for -
ward appli ca tion of the mate rial pre sented in the fore go ing
sec tions. The first step is the con struc tion of a data base of
NIR absorbance and fluid prop er ties pres sure-vol ume-tem -
per a ture (PVT) lab o ra tory mea sure ments (includ ing com -
po si tion, den sity, gas/oil ratio) made on a rep re sen ta tive
suite of oils mea sured at dif fer ent tem per a tures and pres -
sures. The data base is then used to con struct a map ping
func tion to pre dict fluid prop er ties from NIR absorbance
mea sure ments on oils that are not in the data base. 

The data base used for this paper con sisted of 14 live
crude oils on which molec u lar com po si tions, gas/oil ratios,
and den si ties were mea sured along with opti cal den si ties
(i.e., absorbances). The vis cos i ties of oils in the data base
were not known. How ever, the oils are all believed to
exhibit low val ues of vis cos ity. Fig ure 12 shows the opti cal
den sity data, acquired in the NIR wave length range from
1,000 to 2,100 nm. Note that opti cal den si ties are neg a tive
for some of the sam ples; this was caused by a mea sure ment
off set. The molec u lar com po si tion data for the 14 oils in the
data base were mea sured using gas chro ma tog ra phy (GC).
Com po si tion data con sisted of mole per cent ages of mol e -
cules with car bon num bers C-1 (meth ane), C-2 (eth ane),
C-3 (pro pane), i-C-4 (iso-butane), n-C-4 (nor mal butane),
i-C-5 (iso-pentane), n-C-5 (nor mal pentane), C-6 (hex ane),
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and C-7+ (heptane plus mol e cules with higher car bon num -
bers). This data base was not ideal because tem per a ture and
pres sure data were not avail able. Also, the accu racy of the
RBF pre dic tions of the heavier com po nents could have
been tested if the GC mea sure ments had included higher
car bon num bers.

The map ping func tion used to pre dict com po si tion from
NIR mea sure ments is obtained from equa tion 19 by replac -
ing the sca lar vis cos ity out put by a com po si tion out put vec -
tor. A vec tor con tain ing the mea sured opti cal den sity at

each wave length replaces the ampli tudes in the T2 dis tri bu -
tion. The sca lar coef fi cient in equa tion (19) is replaced by a
coef fi cient vec tor with dimen sion equal to the num ber of
car bon num bers in the GC com po si tions. Fig ure 13 shows
the com po si tions pre dicted from the NIR absorp tion mea -
sure ments along with those mea sured by GC. Car bon num -
bers C-1 through C-6 and C7+ are on the x-axis in Fig ure
13. These results were obtained using the NWRE approx i -
ma tion for the coef fi cient vec tors. NN dis tances were used
to define the RBF widths. These results are very encour ag -
ing and show that RBF inter po la tion is a prac ti cal method
for pre dict ing com po si tion from NIR absorp tion mea sure -
ments. Fig ure 14 shows the oil den si ties pre dicted from
NIR mea sure ments. Note that they agree with the mea sured
val ues to within 0.02 g/cc. It should be noted that there are
no well-estab lished cor re la tions that relate NIR absorp tion
spec tra to mass den si ties of crude oils. Fur ther work is
needed to explore the range of crude oil vis cos i ties for
which NIR absorp tion spec tra can be used to pre dict accu -
rate mass den si ties. 

SUMMARY AND CONCLUSIONS

This paper has pro posed a new method for solv ing dif fi -
cult inverse prob lems for which it is pos si ble to con struct a
large cal i bra tion data base. The pro posed method does not
require iter a tive train ing and is sim ple to imple ment once
the data base is estab lished from avail able mea sure ments or
com pu ta tions. Three exam ple prob lems of cur rent inter est
in well log ging appli ca tion have been used to dem on strate
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FIG. 12 Mea sured NIR absorbances (opti cal den si ties) ver sus
wave length for a data base of 14 live oils. 

FIG. 13 Com par i son of com po si tions pre dicted from mea sured 
NIR absorbances with those mea sured in the lab o ra tory using
GC for a data base of 14 live crude oils.

FIG. 14 Com par i son of mass den si ties pre dicted from NIR
absorbance mea sure ments with those mea sured in the lab o ra -
tory for a data base of 14 live crude oils.



the flex i bil ity, accu racy, and reli abil ity of the method. Good 
benchmarking results have been obtained for all three
exam ple prob lems except for those data that are at the
bound aries of the data bases used in this paper. To rem edy
this prob lem the data bases can be expanded so that their
bound aries encom pass the range of data encoun tered in
prac tice.

Gaussian RBFs were used as basis func tions in this
paper, because they are the only multivariate RBFs that can
be fac tored into prod ucts of univariate func tions. This is an
attrac tive fea ture for prob lems where input data from mul ti -
ple sen sors are required (e.g., see equa tion (19)).  

The inver sion method devel oped in this paper can be
used to approach com plex inverse prob lems for which
accu rate for ward mod els are unknown and can also be used
to obtain fast solu tions of inverse prob lems asso ci ated with
computationally inten sive for ward mod els. More over, the
meth od ol ogy pro posed in this paper can be used to solve a
broad range of esti ma tion prob lems encoun tered in
well-log ging and geo phys i cal inter pre ta tion. 

The same method can also be used as a fast for ward
model, i.e., the RBF map ping func tion becomes a for ward
model if one exchanges data base inputs and out puts. There
are many inter est ing ques tions that remain for future work.
For instance, is there an opti mal tech nique for select ing the
widths of the RBFs?  If the data base inputs and out puts are
noisy, what is the opti mal way to choose the coef fi cients of
the RBF basis func tions?  How does the size and dis tri bu -
tion of sam ples in the data base affect the accu racy of the
pre dic tions?  

NOMENCLATURE

[Units]*r
A ampli tudes of a T1, T2, or D dis tri bu tion 

of crude oil in equa tion (19) [arbi trary]r
Aj  ampli tudes of a T1, T2, or D for j-th 

data base case in equa tion (19) [arbi trary]
A(l) NIR opti cal den sity at wave length l

[dimensionless]
a param e ter in T2-vis cos ity empir i cal 

cor re la tion in equa tion (17) [s×cp×K–1]
b param e ter in D-vis cos ity empir i cal 

cor re la tion in equa tion (18) [cm2×s–1×cp×K–1]
c con cen tra tion of an absorb ing medium 

in equa tion (25) [moles/liter]r
ci  coef fi cient vec tor mul ti ply ing RBF func tion

(e.g., see equa tion (2)) [units of 
r r
F x( )]

C matrix con tain ing the data base coef fi cient 
vec tors in equa tion (12) [units of 

r r
F x( )]

r
di stand off for i-th data base case for 3D 

induc tion tool [in.]
D molec u lar dif fu sion coef fi cient [cm2×s–1]
DLM log a rith mic mean value of D dis tri bu tion [cm2×s–1]r r
f x( ) multivariate func tion to be approx i mated

from its sam ple val ues r r
F x( ) RBF approx i ma tion to 

r r
f x( ) (see equa tion (2))

f(gor) empir i cally deter mined func tion of 
gas/oil ratio in equa tion (17) [dimensionless]

gor gas/oil ratio in equa tion (17) [m3/m3]
I(l) trans mit ted power of NIR radi a tion at 

wave length l [watts]
Io(l) inci dent power of NIR radi a tion at 

wave length l [watts]
l opti cal path length in equa tion (25) [cm]
N num ber of cases in data base
NNj near est neigh bor dis tance for data base input

r
x j , i.e., min

r r
x xj i-  for all i j¹ [units of 

r
x j ]

P pres sure of live oil in equa tion (19) [psi]
Pj pres sures of data base mea sure ments in 

equa tion (19) [psi]
ri radius of bore hole for i-th data base case 

for 3D induc tion tool [in.]
sj width of Gaussian RBF cen tered at 

data base input [units of 
r
x j ]

sg width of Gaussian RBFs for GOR 
mea surements in equa tion (19) [m3/m3]

sP width of Gaussian RBFs for pres sure 
mea sure ments in equa tion (19) [psi]

sT width of Gaussian RBFs for tem per a ture 
mea sure ments in equa tion (19) [°F]

T tem per a ture of live oil in equa tion (19) [°F]
Tj tem per a tures of data base mea sure ments 

in equa tion (19) [°F]
T1 lon gi tu di nal relax ation time [ms]
T2 trans verse relax ation time [ms]
T2,LM log a rith mic mean value of T2 

dis tri bu tion [ms]r
x n-dimen sional input vec torr
x i n-dimen sional input vec tors in data base

for i N=12, , ,K
xi,m m-th com po nent of 

r
x i

xm m-th com po nent of 
r
xr

yi m-dimen sional out put vec tor in data base 
cor re spond ing to input 

r
x i

Y matrix con tain ing the data base out put vec tors 
in equa tion (12)

Greek Sym bols
a molar absorbtivity in Beer’s law 

(equa tion (25)) [liters/(mole×cm)]
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g reg u lar iza tion param e ter in equa tion
(4b) [dimensionless]

h vis cos ity [cp]
hi vis cos ity of i-th oil in data base  [cp]
la for ma tion resis tiv ity ani so tropy 

fac tor [dimensionless]
l wave length of NIR radi a tion [nm]
r
s a

raw( ) appar ent raw con duc tiv i ties mea sured by

3D induc tion tool [mhos]
r
s a

c( ) appar ent bore hole cor rected con duc tiv i ties 

for 3D induc tion tool [mhos]
r
s a i

raw
,

( ) appar ent raw con duc tiv i ties for i-th case 

in data base [mhos]
si,j cou pling between trans mit ter dipole in 

direc tion i with receiver dipole in direc tion  j
 [mhos]

sh hor i zon tal con duc tiv ity of infi nite 
homogeneous for ma tion

sh,j hor i zon tal con duc tiv ity of for ma tion 
for i-th case in data base [mhos]

sm con duc tiv ity of bore hole fluid [mhos]
sm,j con duc tiv ity of bore hole fluid for i-th 

case in data base [mhos]
sv ver ti cal con duc tiv ity of infi nite 

homogeneous for ma tion [mhos]
sv,i ver ti cal con duc tiv ity of for ma tion for i-th 

case in data base [mhos]
j(

r r
x x i- )

RBF cen tered at 
r
x i [dimensionless]

F inter po la tion matrix whose ele ments are 
RBFs eval u ated at the data base inputs

*Note that units for some quan ti ties are not given
because the units are prob lem depend ent. This includes   
units for the data base input and out put vec tors (e.g., 

r
x and 

r
y

and the matri ces con structed from these vec tors.
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