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Abstract We derive an exact convergent analytical solution for the complex frequency-dependent
magnetic field on the surface of an infinitely long and perfectly conducting metal cylinder situated in a
cylindrically layered dissipative medium. The inhomogeneous medium consists of two exterior cylindrical
layers that are concentric with the cylinder. The magnetic field on the cylinder is excited by a longitudinally
oriented oscillating magnetic dipole transmitter on the cylinder surface. An exact analytical solution to this
problem has not been previously published and is of theoretical as well as practical importance, e.g., in
modeling the responses of electromagnetic wave propagation well logging tools. It is shown that the
magnetic field on the cylinder surface can be expressed as a real-axis integral; however, the integrand
oscillates rapidly and diverges for large values of the integration variable. The real-axis integral is replaced by
the sum of two convergent branch line integrals and a sum over the residues of the complex poles in the
integrand of the real-axis integral. The poles correspond physically to waveguide modes that propagate with
discrete wave numbers. A pole search algorithm is developed to locate the positions of the poles and
compute their residues. Phase shifts and attenuations of the magnetic field between receivers for a 1.1 GHz
well logging tool are computed to elucidate the pole spectra and the relative contributions of the waveguide
modes and the branch cut integrals for different thicknesses of the innermost dielectric layer and for different
layer properties.

1. Introduction

The present paper builds on and extends the recent work of Freedman [2015], which published the first exact
analytical and easily computable solutions for magnetic fields on a metal cylinder excited by both longitudi-
nal and transverse magnetic dipole transmitters on its surface for a cylinder in a homogeneous dissipative
dielectric medium. In this paper we confront the more challenging problem, and the one of greater theore-
tical as well as practical importance, e.g., in the computation of the responses of electromagnetic (EM) wave
propagation well logging tools [e.g., Hizem et al., 2008], where the devices are situated in an inhomogeneous
cylindrically layered medium. We shall consider the theoretical model shown in Figure 1, which consists of a
perfectly conducting metal cylinder and two exterior dissipative dielectric cylindrical layers with a longitudin-
ally oriented oscillating pointmagnetic dipole on the surface of the cylinder. The innermost layer is denoted by
medium 1 and is defined in the region a< r< b. The radially unbounded outer layer is denoted by medium 2
and is defined for b< r<∞. The thickness of layer 1 is b� a. The two-layer problem is important for modeling
logging tool responses because frequently, there is a lossymedium (e.g., drillingmudor filter cake on the bore-
hole wall) separating the drill collar or antenna pad fromdirect contact with the subterranean rock formations.

We derive a real-axis integral solution for Hz(a,ϕ,z) from a linear combination of the EM fields derived from
magnetic and electric Hertz potentials. The real-axis integral satisfies the boundary conditions and represents
a correct formal solution to the boundary-value problem; however, it is not useful for practical computations
because the integrand oscillates rapidly and diverges for large values of the integration variable.Wait [1987]
derived an analytical real-axis integral solution for a related EMwell logging problem and noted that the inte-
grand had convergence issues but he did not attempt to confront the technical difficulties required to derive
a convergent solution that can be used for practical computations. Using a judiciously chosen branch cut and
Cauchy’s residue theorem, it is shown that the real-axis integral for Hz(a,ϕ,z) can be replaced by a sum of two
convergent branch line integrals and a summation over residues from complex poles in the real-axis inte-
grand. We discuss the location and distribution of the poles in the complex plane and provide a pole search
algorithm for locating the poles and computing their residues. Two numerical tests used to validate the pole
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search algorithm and the residue sum-
mations are discussed. As a practical
example by using the analytical solu-
tion, phase shifts and attenuations of
the magnetic field between receivers
for a 1.1 GHz EM wave propagation well
logging tool are computed. The relative
contributions of the waveguide modes
and the branch cut integral for different
thicknesses of the innermost dielectric
layer and for different layer properties
are discussed.

2. Derivation of the Real-Axis
Integral Solution
2.1. Problem Geometry

The cylinder is embedded in a nonmag-
netic dissipative dielectric medium that
consists of two concentric cylindrical
layers with complex propagation con-
stants k1 and k2. The standoff layer has
propagation constant k1. The standoff
layer separates the cylinder from the
radially unbounded outermost layer,
which has propagation constant k2.
The geometry and EM properties of
the two-layer medium are described
by the equation

k ¼ k1; if a ≤ r ≤ b
k2; if b < r ≤∞

�
; (1)

where r is the radial coordinate in the
cylindrical coordinate system, a is the
cylinder radius, and b is the outer radius
of the standoff layer. The thickness of
the standoff layer is b� a. The EM
properties of the layers are described
by the complex propagation constants
kj ¼ ω ffiffiffiffiffiffiffiffiμoεj

p
for j= 1,2. The complex

permittivity of each medium is given
by εj= εoκj(1+ i tan δj). In these equations εo and μo are the dielectric permittivity and magnetic susceptibility
of a vacuum, respectively, κj are the relative dielectric constants, tan δj are the loss tangents, ω=2πf is the
angular frequency of the oscillating magnetic dipole transmitter, and i ¼ ffiffiffiffiffiffiffi�1

p
. The voltage induced in amag-

netic dipole receiver located at (a,ϕ, z) on the cylinder surface is proportional to Hz(a,ϕ,z). The EM fields are
determined by solving Maxwell’s equations, with appropriate boundary conditions, in the region a ≤ r ≤∞ for
a longitudinally oriented magnetic dipole transmitter located at (ro, 0, 0). The radial coordinate ro of the trans-
mitter is chosen to be in the interval a< ro< b so that the source is initially not on the boundary at r= a. The
limit ro→ a is taken in the radial Green’s function after the boundary conditions are satisfied. This procedure
avoids problems that can occur when the source is on a layer boundary and proper care is not taken to
account for the discontinuity of the radial Green’s function at the source position.

2.2. Hertz Potentials

The addition of cylindrical layering produces scattering at the layer boundaries. The radial layers destroy the
symmetry needed (translational invariance in the radial direction) for pure transverse electric (TE) modes. The

Figure 1. Schematic of the model showing a longitudinally oriented point
magnetic dipole transmitter located on the surface of a metal cylinder of
radius a. The metal cylinder is situated in a medium consisting of two
concentric cylindrical layers. The innermost layer (medium 1) is referred to
as the standoff layer. The thickness of the standoff layer 1 is b� a. The
outermost layer is radially unbounded.
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solution of the model in a cylindrically layered medium therefore involves nonzero components for all of the
EM field components. If only the EM fields from the magnetic Hertz potential are used, it is not possible to
satisfy the boundary conditions in a multilayered cylindrical geometry. The most general solution possible
for this geometry can be found from a superposition of the partial fields derived from electric and magnetic

Hertz vectors [Stratton, 1941]. Thus, we introduce the magnetic Hertz vector Π
→ mð Þ ¼ 0; 0; Π

mð Þ
z

� �
, which

in cylindrical coordinates (r,ϕ, z) satisfies the inhomogeneous scalar Helmholtz wave equation (1) given
in Freedman [2015] for a point magnetic dipole transmitter with dipole moment Mo oriented along the

z-direction with coordinates (ro, 0, 0). The EM fields generated by Π
mð Þ
z are TE waves with Ez= 0. The boundary

conditions can be satisfied by a superposition of the partial EM fields derived fromΠ
mð Þ
z and those derived from

the electric Hertz vector Π
→ eð Þ ¼ 0; 0; Π

eð Þ
z

� �
, which satisfies the homogeneous Helmholtz wave equation.

The EM fields derived from Π
eð Þ
z are transverse magnetic waves with Hz=0. The two partial differential

equations for the Hertz potentials are solved in section 2.4 subject to the boundary conditions discussed
in the next section.

2.3. EM Fields and Boundary Conditions

The electric and magnetic fields computed from the magnetic Hertz vector are given by

E
→ mð Þ ¼ iωμo∇�Π

→ mð Þ (2a)

and

H
→ mð Þ ¼ ∇�∇�Π

→ mð Þ: (2b)

The electric and magnetic fields computed from the electric Hertz vector are given by

E
→ eð Þ ¼ ∇�∇�Π

→ eð Þ (3a)

and

H
→ eð Þ ¼ �i k2

ωμo
∇�Π

→ eð Þ: (3b)

The boundary conditions are satisfied by the total fields

E
→ tð Þ ¼ E

→ mð Þ þ E
→ eð Þ (4a)

and

H
→ tð Þ ¼ H

→ mð Þ þ H
→ eð Þ: (4b)

The boundary conditions require that the tangential components of the total electric field E
tð Þ
1;ϕ ¼ 0 and

E
tð Þ
1;z ¼ 0 vanish on the surface of the perfectly conducting cylinder at r= a. We find from the boundary

condition E
tð Þ
1;ϕ ¼ 0 that

�iωμo

∂Π mð Þ
1;z

∂r
þ 1

r

∂2Π eð Þ
1;z

∂z∂ϕ

 !
r¼a

¼ 0; (5)

and from the boundary condition E
tð Þ
1;z ¼ 0 we find

∂2Π eð Þ
1;z

∂z2
þ k21Π

eð Þ
1;z

 !
r¼a

¼ 0; (6)

where the subscripts l= 1, 2 for the EM fields and the Hertz vectors denote the layer indices. The next step is
to apply the boundary conditions at the interface separating the two cylindrical layers. The boundary condi-
tions derived from Maxwell’s equations require that at r= b the tangential components of E

→ tð Þ and H
→ tð Þ are

continuous, which leads to four equations. From the condition that E
tð Þ
1;ϕ ¼ E

tð Þ
2;ϕ one finds

�iωμo

∂Π mð Þ
1;z

∂r
þ 1

r

∂2Π eð Þ
1;z

∂z∂ϕ

 !
r¼b

¼ �iωμo

∂Π mð Þ
2;z

∂r
þ 1

r

∂2Π eð Þ
2;z

∂z∂ϕ

 !
r¼b

: (7)
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The condition E
tð Þ
1;z ¼ E

tð Þ
2;z at r= b gives

∂2Π eð Þ
1;z

∂z2
þ k21Π

eð Þ
1;z

 !
r¼b

¼ ∂2Π eð Þ
2;z

∂z2
þ k22Π

eð Þ
2;z

 !
r¼b

: (8)

The requirement that H
tð Þ
1;z ¼ H

tð Þ
2;z at r= b leads to the equation

∂2Π mð Þ
1;z

∂z2
þ k21Π

mð Þ
1;z

 !
r¼b

¼ ∂2Π mð Þ
2;z

∂z2
þ k22Π

mð Þ
2;z

 !
r¼b

(9)

and the condition H
tð Þ
1;ϕ ¼ H

tð Þ
2;ϕ at r= b leads to

1
r

∂2Π mð Þ
1;z

∂z∂ϕ
þ ik21
ωμo

∂Π eð Þ
1;z

∂r

 !
r¼b

¼ 1
r

∂2Π mð Þ
2;z

∂z∂ϕ
þ ik22
ωμo

∂Π eð Þ
2;z

∂r

 !
r¼b

: (10)

2.4. Solution of the Partial Differential Equations for the Electric and Magnetic Hertz Potentials

To solve the Helmholtz equations, we assume the following expansions for the Hertz potentials:

Π
mð Þ
l;z ¼ 2

π

X∞
n¼0

εncosnϕ ∫
∞

0

eΠ mð Þ
n;l λ; rð Þcosλz dλ (11)

and

Π
eð Þ
l;z ¼

2
π

X∞
n¼0

εnsinnϕ ∫
∞

0

eΠ eð Þ
n;l λ; rð Þsinλz dλ: (12)

We have introduced the Neumann function εn= δn,0 + 2(1� δn,0), where δn,o is the Kronecker delta function.
The solutions in equations (11) and (12) will be shown to satisfy both the partial differential equations and the

boundary conditions. Substituting equations (11) and (12) into the Helmholtz wave equations satisfied byΠ
mð Þ
l;z

and Π
eð Þ
l;z respectively, easily finds that the two transformed radial potentials eΠ mð Þ

n;l λ; rð Þ and eΠ eð Þ
n;l λ; rð Þ obey

Bessel’s equation. The magnetic Hertz potential solutions in the domain a ≤ r ≤∞ that are regular at infinity
can be written in terms of modified Bessel functions:

eΠ mð Þ
n;1 λ; rð Þ ¼ AnKn γ1rð Þ þ BnIn γ1rð Þ þMo

4π
Kn γ1r>ð ÞIn γ1r<ð Þ (13a)

for a ≤ r ≤ b and eΠ mð Þ
n;2 λ; rð Þ ¼ CnKn γ2rð Þ (13b)

for r ≥ b. The solutions for the electric Hertz vector are given byeΠ eð Þ
n;1 λ; rð Þ ¼ DnKn γ1rð Þ þ EnIn γ1rð Þ (13c)

for a ≤ r ≤ b and eΠ eð Þ
n;2 λ; rð Þ ¼ FnKn γ2rð Þ (13d)

for r ≥ b.

The last term in equation (13a) is the radial Green’s function in cylindrical coordinates where in standard
notation r<(r>) is the lesser (greater) of r and ro. The functions In(γlr) and Kn(γlr) are modified Bessel functions

and γl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � k2l

q
. The six unknown coefficients An, Bn, Cn, Dn, En, and Fn can be determined from solving the

set of six linear algebraic equations derived from the boundary conditions.

2.5. Solving for the Unknown Coefficients

This section applies the boundary conditions in equations (5)–(10) by using equations (11) and (12) and equa-
tions (13a)–(13d). The boundary conditions lead to a set of six linear algebraic equations for the six unknown
coefficients An, Bn, Cn, Dn, En, and Fn. Because we are interested in calculating Hz(a,ϕ, z) on the surface of the
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metal cylinder, we only need the two coefficients An and Bn; however, they must be determined by solving
the full set of six linear equations resulting from application of the boundary conditions. The derivation of
the set of six linear equations requires some straightforward but rather tedious algebra. One can show from
the set of six equations that En and Fn can be determined solely from Dn and that the resulting set of four
linear algebraic equations must be solved for the coefficients An, Bn, Cn, and Dn. The four equations to be
solved after eliminating En and Fn are

AnKn γ1bð Þ þ BnIn γ1bð Þ � γ22
γ21
CnKn γ2bð Þ ¼ �Mo

4π
Kn γ1bð ÞIn γ1að Þ; (14)

AnK ′
n γ1að Þ þ BnI′n γ1að Þ ¼ �Mo

4π
Kn γ1að ÞI′n γ1að Þ; (15)

AnK ′
n γ1bð Þ þ BnI′n γ1bð Þ � γ2

γ1
CnK ′

n γ2bð Þ þ DnΛ1n ¼ �Mo

4π
K ′
n γ1bð ÞIn γ1að Þ; (16)

and

AnKn γ1bð Þ þ BnIn γ1bð Þ � CnKn γ2bð Þ þ DnΛ2n ¼�Mo

4π
Kn γ1bð ÞIn γ1að Þ: (17)

The primes on the Bessel functions denote derivatives with respect to their arguments. The functionsΛ1n and
Λ2n in equations (16) and (17), respectively, are defined as follows:

Λ1n ¼ inλ
γ1bωμo

γ22 � γ21
� �

γ22

F1;n
In γ1að Þ (18)

and

Λ2n ¼ iγ1
nλωμobð Þ

Qn λð Þ
In γ1að Þ : (19)

We have also defined the quantity Qn in equation (19)

Qn λð Þ ¼ k1bð Þ2F2;n � γ1
γ2

K ′
n γ2bð Þ

Kn γ2bð Þ k2bð Þ2F1;n; (20)

where

F1;n ¼ Kn γ1bð ÞIn γ1að Þ � Kn γ1að ÞIn γ1bð Þ (21)

and

F2;n ¼ K ′
n γ1bð ÞIn γ1að Þ � Kn γ1að ÞI′n γ1bð Þ: (22)

The next step is to solve the four equations (14)–(17) for the two coefficients An and Bn that are needed to
calculate the z component of the magnetic field on the cylinder surface. To simplify equations (14)–(22)
we let ro= a so that the dipole source is on the cylinder surface. This has no effect on the ensuing calculations.

On recalling equations (11) and (13a) and also equation (12) in Freedman [2015] one finds

Hz a;ϕ; zð Þ ¼ �1
π

∑
∞

n¼0
εncosnϕ∫

∞

�∞γ
2
1 AnKn γ1að Þ þ BnIn γ1að Þ þMo

4π
Kn γ1roð ÞIn γ1að Þ

� 	
exp iλ zj jð Þdλ; (23)

where we havemade use of the fact that the integrand is an even function of λ to extend the integral over the
entire real axis. We have also replaced the receiver position z by |z| because it follows from the symmetry of
the problem that the EM fields are even functions of z. It is clear from equation (23) that the real-axis integral
for the z component of the magnetic field on the cylinder is determined once An and Bn are known.

We solve the set of four linear equations (14)–(17) by using Cramer’s rule and write An and Bn as the ratio
of determinants:

An ¼ N1n

Δn
(24a)

and

Bn ¼ N2n

Δn
: (24b)
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The determinants N1n, N2n, and Δn for the system of equations (14)–(17) can easily be evaluated by taking
advantage of the zeroes in the first two rows of the fourth column by using cofactors and expanding along
column four. Upon recalling equations (18)–(21) and performing some rather lengthy algebra, the determi-
nant of the coefficients can be expressed as

Δn ¼ �inλ
bωμoγ

3
1γ

2
2

Kn γ2bð Þ
In γ1að Þ k21 � k22

� �2
F1;nF3;n þ γ21γ

2
2Qn

nλð Þ2 γ22F4;n þ
γ1γ2K

′
n γ2bð ÞF3;n

Kn γ2bð Þ

 �" #

; (25)

where we have defined the two functions

F3;n ¼ Kn γ1bð ÞI′n γ1að Þ � In γ1bð ÞK ′
n γ1að Þ (26)

and

F4;n ¼ K ′
n γ1að ÞI′n γ1bð Þ � I′n γ1að ÞK ′

n γ1bð Þ: (27)

The next step is to evaluate the terms in the numerator of equation (23). On recalling equations (24a) and
(24b) and after evaluating the determinants considerable algebra results in

N1nKn γ1að Þ þ N2nIn γ1að Þ þMo

4π
Δn In γ1að ÞKn γ1að Þ ¼

iMo nλ
4πωμobγ

4
1γ

2
2a
Kn γ2bð Þ
In γ1að Þ k21 � k22

� �2
F21;n �

γ21γ
2
2Qn

nλð Þ2 γ22F2;n �
γ1γ2K

′
n γ2bð ÞF1;n

Kn γ2bð Þ

 �" #

:

(28)

In arriving at equation (28), we made use of the Wronskian relationship given in equation (15) of Freedman
[2015] for modified Bessel functions of integer order.

2.6. Real-Axis Integral Representation for Hz(a,ϕ,z)

Recalling equations (24a) and (24b) and substituting equations (25) and (28) into equation (23) finds that

Hz a;ϕ; zð Þ ¼ Mo

4π2a

X∞
n¼0

εncosnϕ ∫
∞

�∞

Nn λð Þ
Dn λð Þexp iλ zj jð Þdλ; (29)

where for n> 0:

Nn λð Þ ¼ γ1 k21 � k22
� �2

F21;n �
γ21γ

2
2Qn

nλð Þ2 γ22F2;n �
γ1γ2K

′
n γ2bð ÞF1;n

Kn γ2bð Þ

 �" #

(30)

and

Dn λð Þ ¼ k21 � k22
� �2

F1;nF3;n þ γ21γ
2
2Qn

nλð Þ2 γ22F4;n þ
γ1γ2K

′
n γ2bð ÞF3;n

Kn γ2bð Þ

 �

: (31)

For n= 0 we find that

N0 ¼ �γ1 F2;0 � γ1K
′
o γ2bð ÞF1;0

γ2Ko γ2bð Þ

 �

(32)

and

D0 ¼ F4;0 þ γ1K
′
o γ2bð ÞF3;0

γ2Ko γ2bð Þ : (33)

The real-axis integral representation for the magnetic field given in equation (29) is a formal mathematical
solution; however, it is not useful for practical computations. The integrand in equation (29) oscillates rapidly
and can be shown by using the asymptotic behavior of the modified Bessel functions [Olver, 1965] to increase
linearly with λ as λ→∞. This behavior is similar to that of the integrand in the real-axis integral representation
of Hz(a,ϕ,z) for the one-layer or unbounded homogeneous medium problem, i.e., see equation (16) in
Freedman [2015].

In the next section we show that equation (29) can be replaced by a sum of two branch line integrals plus the
sum of residues of poles in the complex λ-plane. The complex integrands of the branch line integrals are
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smooth functions that decay exponentially for large values of the integration variable. The poles in the
integrand of the real-axis integral in the complex λ-plane are associated with waveguide or trapped modes
that propagate in the first layer at a ≤ r ≤ b.

Before concluding this section, it is important to note that we can show that the real-axis integral in equation
(29) reduces to the correct integral representation derived by Freedman [2015] for the cylinder in an
unbounded medium in the limit representing an unbounded medium by letting γ1 = γ2 = γ (or equivalently

k1 = k2 = k). Here γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � k2

p
, where k is the complex propagation constant of the unbounded medium.

These results follow after some algebra applied to equations (30) and (31) for n> 0 and to equations (32)
and (33) for n= 0 by using equations (21), (22), (26), and (27). The calculations are straightforward if one
combines terms and uses theWronskian relation in equation (15) of Freedman [2015]; therefore, to save space
we do not display the detailed algebra required to show that equation (29) correctly reduces to equation (16)
derived by Freedman [2015] for the unbounded medium. It is worth noting that in this limit the radius b of
the interface that separates the two media is an irrelevant parameter that cancels out of the calculations
as required.

Another important property of the integrand in equation (29) that we use in the next section is that it is an
even function of γ1, and therefore, the integrand is a single-valued function of γ1 in the complex λ-plane.
This is not at all obvious. The algebra to prove this is somewhat tedious but straightforward, and to save space
we simply discuss the proof and leave the details to the interested reader. The following analytic continuation
formulas for the modified Bessel functions [Olver, 1965] are used:

In eiπz
� � ¼ einπ In zð Þ (34a)

Kn eiπz
� � ¼ e�inπKn zð Þ: (34b)

Using equation (34a) and (34b), first equations (21), (22), (26), and (27) are used to prove that the functions F1,n
and F4,n are even in γ1 and that F2,n and F3,n are odd in γ1. It then follows that Qn in equation (20) is an odd
function of γ1. From these results it is easy to show by using equations (30)–(33) that the integrand in equa-
tion (29) is a single-valued function of γ1 in the complex λ-plane, and therefore, the points λ=± k1 are not
branch points of the integrand. This result is consistent with the findings in an important paper by Chew
[1983], who showed quite generally for the wave equation in a cylindrically multilayered medium with N
layers that the only branch point in the integrand is at λ=± kN, where kN is the propagation constant of
the outermost unbounded layer.

3. Derivation of Convergent Integral Representation and Residue Summation
for Hz(a,ϕ,z)
From the preceding discussion the integrand in equation (29) is an analytic function of λ in the complex
λ-plane except for branch points at λ=± k2 and poles at the zeroes of the denominator, i.e., for Dn(λ) = 0.
Applying Cauchy’s residue theorem to the same integration path indicated by the arrows shown in
Figure 2 in Freedman [2015], where the branch point in the upper half of the λ-plane is at λ=+ k2, leads to

Hz a;ϕ; zð Þ þ Iγ2þ þ Iγ2� ¼ 2πi
X∞
n¼0

X
k

Rn λ
kð Þ
n

� �
; (35)

where λ
kð Þ
n is the complex coordinate of the kth pole of azimuthal order n of the integrand in equation (29) and

Iγ2± are the branch line integrals shown in Figure 2 of Freedman [2015]. Note for equation (35) to be valid, the
integrand in equation (29) must vanish on the infinite semicircle in the upper half of the λ-plane, which is
satisfied provided that |z|≠ 0, which is the case of practical interest. The poles are the zeroes of the denomi-
nator of the integrand and are the solutions of the transcendental equation:

Dn λ
kð Þ
n

� �
¼ 0: (36)

The solutions of equation (36) were found by using a complex Newton’s method and a numerical grid search
algorithm in the complex λ-plane, which is discussed in section 4. We have found numerically that for each
value of the azimuthal mode number n there can be multiple solutions of equation (36) corresponding to
different values of the index k. The index k can be thought of as corresponding to a branch label because
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we find that for thick standoff layers, multiple branches roughly resembling families of hyperbolas with each

consisting of poles of all azimuthal orders (n= 0, 1, 2,…) can exist. Rn λ
kð Þ
n

� �
are the residues of the poles in the

integrand of equation (29), i.e.,

Rn λ
kð Þ
n

� �
¼ Mo

4π2a

εncosnϕNn λ
kð Þ
n

� �
exp iλ

kð Þ
n zj j

� �
D′
n λ

kð Þ
n

� � ; (37)

where Dn′ is the derivative with respect to λ of equation (31) for n> 0 and equation (33) for n= 0.

The next step is to consider the two branch line integrals in equation (35). The branch cut discussed in section
2.4 of Freedman [2015] leads to branch line integrals Iγ2þ and Iγ2� with integrands that converge exponentially

to zero as the dimensionless integration variable increases. The branch cut separates the two Riemann sheets

of the double valued function γ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � k22

q
in the complex λ-plane. Moreover, on the branch cut Re γ2 = 0

andon the twobranch lines labeled γ2+ and γ2� the complex parameter γ2 is pure imaginary and has the values

γ2þ ¼ uexp
iπ
2


 �
(38a)

and

γ2� ¼ uexp � iπ
2


 �
: (38b)

Next we express γ1 (which is continuous across the branch cut) in terms of the branch line coordinate u.

γ1þ ¼ γ1� ¼ γ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 � k21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k21 � u2

q
: (38c)

Applying the branch cut transformations using the same Bessel function transformations discussed in section
2.4 of Freedman [2015] to the integrand in equation (29) and introducing the dimensionless integration
variable x= ua and the dimensionless z-coordinate z ¼ z=a one finds

Iγ2þ ¼ Mo

4π2a3
X∞
n¼0

εncosnϕ ∫
∞

0

xei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2að Þ2�x2

p
zj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2að Þ2 � x2
q N

þð Þ
n xð Þ

D
þð Þ
n xð Þ

dx: (39)

In equation (39) we have defined the following functions for n> 0:

N
þð Þ
n xð Þ ¼ t xð Þ k1að Þ2 � k2að Þ2

h i2
•F21;n xð Þ þ i x t2 xð ÞS þð Þ

n xð Þ
n2 k2að Þ2 � x2
h i• x2F2;n xð Þ þ

x t xð ÞH 2ð Þ
n ′ xb

a


 �
F1;n xð Þ

H
2ð Þ
n

xb
a


 �
8>><>>:

9>>=>>;
2664

3775; (40)

D
þð Þ
n xð Þ ¼ k1að Þ2 � k2að Þ2

h i2
•F1;n xð ÞF3;n xð Þ � i x t2 xð ÞS þð Þ

n xð Þ
n2 k2að Þ2 � x2
h i• x2F4;n xð Þ �

x t xð ÞH 2ð Þ
n ′ xb

a


 �
F3;n xð Þ

H 2ð Þ
n

xb
a


 �
8>><>>:

9>>=>>;
2664

3775
(41)

and for n= 0:

N
þð Þ
0 ¼�t xð Þ F2;0 xð Þ þ t xð ÞH 2ð Þ

0
′ x b

a

� �
F1;0 xð Þ

x H 2ð Þ
0 x b

a

� �" #
(42)

D
þð Þ
0 ¼ F4;0 xð Þ � t xð ÞH 2ð Þ

0
′ x b

a

� �
F3;0 xð Þ

x H 2ð Þ
0 x b

a

� �" #
: (43)

In equations (42) and (43) we canceled a common multiplicative factor because only the ratio is needed in
equation (39). In equations (40)–(43) we used equation (38c) to define the two functions

S
þð Þ
n xð Þ ¼ i x k1bð Þ2F2;n xð Þ þ i t xð ÞH 2ð Þ

n ′ xb
a

� �
F1;n xð Þ k2bð Þ2

H 2ð Þ
n

xb
a

� � (44)
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and,

t xð Þ ≡γ1a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2að Þ2 � k1að Þ2 � x2

q
: (45)

With the definition of γ1a in equation (45), it can be seen that γ1b= t(x)(b/a) so that the arguments of the func-
tions F1,n, F2,n, F3,n, and F4,n defined previously in equations (21), (22), (26), and (27), respectively, are easily
transformed, e.g.,

F1;n xð Þ ¼ Kn t xð Þ b
a


 �
In t xð Þð Þ � Kn t xð Þð ÞIn t xð Þ b

a


 �
: (46)

The calculation of the branch line integral Iγ2� in equation (35) is similar to the calculation of Iγ2þand one finds that

Iγ2� ¼ � Mo

4π2a3
X∞
n¼0

εncosnϕ ∫
∞

0

xei
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2að Þ2�x2

p
zj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2að Þ2 � x2
q N

�ð Þ
n xð Þ

D �ð Þ
n xð Þ dx; (47)

which has a form similar to the result for Iγ2þ in equation (39). The difference in the algebraic sign of the com-
monmultiplicative factors in equations (39) and (47) arises because the limits of the two branch line integrals
are reversed. In equation (47) we defined the following for n> 0:

N
�ð Þ
n xð Þ ¼ t xð Þ k1að Þ2 � k2að Þ2

h i2
•F21;n xð Þ þ i x t2 xð ÞS �ð Þ

n xð Þ
n2 k2að Þ2 � x2
h i• x2F2;n xð Þ þ

x t xð ÞH 1ð Þ
n ′ xb

a


 �
F1;n xð Þ

H 1ð Þ
n

xb
a


 �
8>><>>:

9>>=>>;
2664

3775; (48)

and

D
�ð Þ
n xð Þ ¼ k1að Þ2 � k2að Þ2

h i2
•F1;n xð ÞF3;n xð Þ � i x t2 xð ÞS �ð Þ

n xð Þ
n2 k2að Þ2 � x2
h i• x2F4;n xð Þ �

x t xð ÞH 1ð Þ
n ′ xb

a


 �
F3;n xð Þ

H 1ð Þ
n

xb
a


 �
8>><>>:

9>>=>>;
2664

3775;
(49)

and for n= 0:

N
�ð Þ
0 xð Þ ¼ �t xð Þ F2;0 xð Þ þ t xð ÞH 1ð Þ

0
′ xb

a

� �
F1;0 xð Þ

xH 1ð Þ
0

xb
a

� �" #
; (50)

and

D
�ð Þ
0 xð Þ ¼ F4;0 xð Þ � t xð ÞH 1ð Þ

0
′ xb

a

� �
F3;0 xð Þ

xH 1ð Þ
0

xb
a

� � ; (51)

where

S
�ð Þ
n xð Þ ¼ i x k1bð Þ2F2;n xð Þ þ i t xð ÞH 1ð Þ

n ′ xb
a

� �
F1;n xð Þ k2bð Þ2

H 1ð Þ
n

xb
a

� � : (52)

In equations (50) and (51) we canceled a common multiplicative factor because only the ratio is needed in
equation (47). Comparing equations (39)–(44) with equations (47)–(52) shows that the only differences in
the integrands of the two branch line integrals are in the factors that depend on γ2. This is exactly as expected
because γ2 is a branch point. It assumes opposite signs on the two branch lines, whereas factors involving γ1
are the same on both branch line integrals because the integrands are single valued functions of γ1 on both
the upper and lower Riemann sheets.

Assembling these results and recalling equation (35) enables writing the z component of the magnetic
field Hz(a,ϕ, z) valid everywhere on the cylinder except at zj j ¼ 0 in the following form:

Hz a;ϕ; zð Þ ¼ � Mo

4π2a3

X∞
n¼0

εncosnϕ∫
∞

0
xexp

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2að Þ2 � x2

q
zj j


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2að Þ2 � x2

q N
þð Þ
n xð Þ

D þð Þ
n xð Þ �

N
�ð Þ
n xð Þ

D �ð Þ
n xð Þ

 !
dx

�2πia2
X∞
n¼0

X
k

εncosnϕ
Nn λ

kð Þ
n

� �
exp iλ

kð Þ
n zj j

� �
D′
n λ kð Þ

n
� �

2666666664

3777777775
: (53)
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The expression in equation (53) is significantly more complex than the corresponding integral for a metal
cylinder and dipole source in an unbounded medium. In the unbounded medium there are no waveguide
modes so there are no poles. It is an important check to show that equation (53) reduces to the expression
for the branch cut integrals derived by Freedman [2015] for the case of a single-layer unbounded medium.
The magnetic field in an unbounded medium is obtained from equation (53) by letting γ1 = γ2 = γ (or
equivalently k1 = k2 = k).

The calculations are too lengthy to present here; however, it is worthwhile to provide the reader some of the
steps. In equations (40)–(43) we first set γ1 = γ2 = γ and k1 = k2 = k, which simplifies the equations. Next we
replace the Hankel function and its derivative by modified Bessel functions by using equation (21b) in
Freedman [2015]. Next we recall equations (21), (22), (26), and (27) and combine terms by using the
Wronskian for modified Bessel functions. Some lengthy but straightforward algebra leads to the equation,

N
þð Þ
n

D þð Þ
n

¼ ixKn ixð Þ
K ′
n ixð Þ ¼ �xH

2ð Þ
n xð Þ

H 2ð Þ
n ′ xð Þ ; (54a)

where the last equality in equation (54a) follows from equation (21b) as noted above. Similar steps can be
applied to equations (48)–(51) if one uses equation (21a) in Freedman [2015]. One then finds that

N
�ð Þ
n

D �ð Þ
n

¼ �ixKn �ixð Þ
K ′
n �ixð Þ ¼ �xH

1ð Þ
n xð Þ

H 1ð Þ
n ′ xð Þ : (54b)

The algebraic sign difference in the argument of the modified Bessel functions in equations (54a) and (54b)

comes from the double-valued square root function t xð Þ ¼
ffiffiffiffiffiffiffiffi
�x2

p
¼ ±ix in equation (45), which is equal to +ix

on the branch line γ2+ and is equal to�ix on the branch line γ2�. Note that the radius b of the interface separ-
ating the two media is an irrelevant parameter in this limit and drops out of the calculations when deriving
equation (54a) and (54b). Substituting equations (54a) and (54b) into equation (53) finds for a single-layer
medium that

Hz a;ϕ; zð Þ ¼ �iMo

2π2a3
X∞
n¼0

εncosnϕ ∫
∞

0

x2exp
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kað Þ2 � x2

q
zj j


 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kað Þ2 � x2

q Im
H

1ð Þ
n xð Þ

H 1ð Þ
n ′ xð Þ

" #
dx; (55)

which is identical to equation (28) in Freedman [2015] for an unbounded single-layer problem if the change of
variables x= ua is made in equation (55). It is worth noting that the only complex quantity in the integrand of
equation (55) is the argument of the exponential function. The Hankel functions in the integrand in equation
(55) have real arguments and can be easily computed. This is not the case for the more complex two-layer
medium integrand because the functions F1,n(x),⋯, F4,n(x) in the integrand of equation (53) contain modified
Bessel functions with complex arguments. In addition to the more complex branch line integrals, the poles of
the integrand in equation (29) must be found and their residues computed in order to compute the magnetic
field in equation (53).

The integrands of the branch line integrals in equation (53), in contrast to the integrand of the real-axis inte-
gral in equation (29), are convergent and decay to zero exponentially for large values of the integration vari-
able x and therefore are useful for practical numerical computations. We used the branch line integrals in
equation (53) to study the effects of a standoff layer on the phase shifts and attenuations of the complex
magnetic field Hz(a,ϕ, z). The complex branch line integrals were integrated by using Simpson’s rule with
automatic interval halving applied until the convergence condition was achieved. The computation
of the branch line integrands requires a summation over the azimuthal index n in equation (53) for each
value of the integration variable (x). The terms in the sum require computation of modified Bessel functions
Kn(z),In(z) and their derivatives with respect to a complex argument z. The number of azimuthal modes
required for the convergence of the sum over n is problem-dependent. For a study of an EM wave propaga-
tion logging tool operating at 1.1 GHz the author found that the number of terms needed for convergence of
the sum was less than 100. For most of the cases studied the integrand in equation (53) is smooth and well
behaved like the example shown in Figure 2. The computer code used to compute the integrand was written
in Fortran by using double-precision floating point computations. Nevertheless, for some cases, especially for
thinner standoff layers (e.g., (b� a)< 0.5 cm), the integrands were spiky as if perturbed by numerical noise,
which is believed to be caused by computer round-off errors. In an attempt to reduce the errors for the
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problematic cases the branch line inte-
grands were combined algebraically
and the combined integrand was com-
puted. The combined integrand exhib-
ited the same noise as the original
coding of the two separate branch line
integrals. The other possible cause of
the noisy integrands might be errors
in the computations of Kn(z) and In(z)
for some orders of (n) and for some
complex arguments in equation (53).
The modified Bessel functions were
computed by using commercial IMSL
subroutines.

4. Computation of the
Residues of the Poles in the
Real-Axis Integrand

The poles correspond to excitations,
which are analogous to bound states
in quantum mechanical scattering the-
ory. In the EM problem the poles are

waveguide modes or trapped waves that can propagate in the standoff layer. Mathematically, these poles
correspond to the discrete eigenvalue spectrum of a differential operator. Here the differential operator is
the Helmholtz wave equation with dissipation. Mathematicians have discussed various general properties
of the eigenvalue spectra of Sturm-Liouville-type differential operators although usually for lossless systems
[Titchmarsh, 1958]. Also, bounds can be derived for the pole locations for planar problems [Chew, 1990,
pp. 114–117]. A similar mathematical proof can probably be derived for bounds on the pole locations
for the azimuthally asymmetric problem treated here; however, the author does not attempt a mathema-
tical proof but instead provides a heuristic physical argument to place bounds on the pole locations.

To compute the residue sum in equation (53), first the poles must be found, i.e., solve the equation:

Dn λ
kð Þ
n

� �
¼ 0 (56)

for n=0, 1, 2,⋯, whereDn λ
kð Þ
n

� �
is defined in equation (31) for n> 0 and in equation (33) for n= 0. The integer

index k in equation (56) accounts for the existence of multiple poles for a given azimuthal mode (i.e., index n).
We use a complex Newton’s method to iteratively solve equation (56) by using a judiciously chosen grid of
initial search points, as discussed in the next section. First, we give a heuristic physical argument that was
used to anticipate bounds on the pole locations in the complex λ-plane. Physically, the poles λ

kð Þ
n correspond

to the spectral wave numbers of modes that are excited in the standoff layer (e.g., layer 1). It can be argued
that the poles will be in the first and third quadrants of the complex λ-plane and are bounded by the hyper-
bolas λ′λ″ ¼ k ′1k

″
1 and λ′λ″ ¼ k ′2k

″
2 . That is, the wave numbers of the waveguide modes are expected to be

between those of the standoff layer (medium 1) and the unbounded layer (medium 2). In the limit as the
standoff layer thickness approaches zero, the poles should approach the hyperbola λ′λ″ ¼ k ′2k

″
2. In the oppo-

site limit of a thick standoff layer, the poles should approach the hyperbola λ′λ″ ¼ k ′1k
″
1. The modes that con-

tribute to the magnetic field in equation (53) are the propagating modes that lie closest to the real axis. As
shown in the following, many of the modes can have vanishingly small residues and are not of practical
importance. The nonpropagating modes are often referred to as evanescent modes.

The zeroes of Dn(λ) are found by using the complex Newton’s method, which involves an iterative solution of
the following recursion formula:

λ kð Þ mþ1ð Þ
n ¼ λ kð Þ mð Þ

n �
Dn λ kð Þ mð Þ

n

� �
D′
n λ kð Þ mð Þ

n

� � ; (57)

Figure 2. The real (solid) and imaginary (dashed) parts of the complex
branch cut integrand in equation (53) plotted versus the dimensionless
integration variable x. The transmitter frequency is 1.1 GHz, and the cylin-
der radius is 0.1016m. The integrand is smooth and decays rapidly to zero
as the integration variable increases. In this example the z coordinate was
chosen to be close to the transmitter to show that the integrand decays
quickly even for small z values. The relative dielectric constants and loss
tangents of the two layers and the thickness of layer 1 are shown.

Radio Science 10.1002/2016RS006046

FREEDMAN METAL CYLINDER IN TWO-LAYER MEDIUM 11



where m= 0, 1,⋯ is an iteration index
and n=0, 1, 2⋯ are the indices of
the azimuthal modes. The prime
denotes the derivative with respect to
λ of Dn(λ) in equation (31) for n> 0
and in equation (33) for n= 0. The
derivatives can be performed analyti-
cally so that numerical differentiation
is not necessary in equation (57). In
the next section we discuss the details
of the pole search algorithm.

4.1. Pole Search Algorithm

The following algorithm was devel-
oped and used to locate the poles:

Step a: Useafinegridof points as initial
values λ kð Þ 0ð Þ

0 to locate all the n= 0 poles.
Each of the n= 0 poles found is associated with a branch labeled by k= 1, 2, 3,⋯. On locating a pole, a check is
made to determine whether or not the pole is unique. If the pole has already been found then it is discarded.
Step b:Use the n=0 poles forλ

kð Þ
0 , found in Step a as starting points in equation (57), to find the n=1 poles for

λ
kð Þ
1 , then use the poles λ

kð Þ
1 as starting points to find the n= 2 poles for λ

kð Þ
2 and etc. A computer program was

written to automatically generate the search grid, locate the poles, and perform the sum over residues in
equation (53). An example of a search grid is shown in Figure 3, and a single branch of poles (i.e., λ

1ð Þ
n for

n= 0, 1, 2,⋯) found by using the pole search algorithm is shown in Figure 4. It is interesting to note that in
this example the standoff layer thickness is 1.0 cm, κ1 = 50, and tan δ1 = 2, and for f= 1.1 GHz, the one-
quarter wavelength is approximately 0.76 cm, which is less than the layer thickness. We found that if the layer
thickness is decreased to less than one-quarter wavelength, e.g., to 0.70 cm, then the poles disappeared and
the guided modes were not excited. Another interesting feature of the pole spectrum in Figure 4 is that there
is a gap or forbidden region in the spectrum that occurs for this example when the pole λ

1ð Þ
59 reaches the

branch cut (i.e., the hyperbola passing through k2). The next pole λ
1ð Þ
60 on the branch is displaced relatively

far from λ
1ð Þ
59, which is reminiscent of gaps in the energy spectrum of electrons in crystalline solids. In solids

the gaps are due to reflection of the electrons from the Brillouin zone boundaries as a result of the absence
of translational invariance in the crystal lattice. Here the branch cut represents a boundary in the complex
λ-plane, which if crossed would lead to solutions on the nonphysical Riemann sheet and therefore are not
allowed. In general, there are a denumerably infinite set of poles; however, the residue summations in
equation (53) have been found to be rapidly convergent for the problem parameters studied by the author

so that only a relatively small number
of poles contribute significantly to the
sums. Figure 5 shows a plot of the
imaginary part of the residue R″n versus
the real part R′n for the poles of order
n= 0, 1, 2,⋯, which are shown in
Figure 4. Observe that both the
real and imaginary parts of the
complex residues rapidly spiral toward
vanishingly small values. It has been
found for small standoff thicknesses
(e.g., b� a≈ 1.0 cm) that the branch
cut integrals totally dominate over
the residue contributions; however,
as the standoff layer thickness is
increased eventually the branch cut
integral contribution becomes negligi-
bly small and the waveguide mode

Figure 3. Lattice of initial search points used in equation (57) to locate the
n = 0 poles for the example in Figure 4.

Figure 4. Single branch of poles found for a 1 cm thick standoff layer. Note
the gap in the pole spectrum near the branch cut.
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contributions dominate. An example
for a 10 cm thick standoff layer for
which the dominant magnetic field at
the receivers is derived from the pole
contributions (i.e., from the sum of
the residues) in equation (53) is subse-
quently discussed. Moreover, as the
standoff layer thickness is increased,
multiple branches of poles exist. For
example, if the standoff layer thickness
for the situation depicted in Figure 4 is
increased from 1.0 cm to 3.0 cm, then
the four branches of poles shown in
Figure 6 are found.

4.2. Checks on the Pole Search
Algorithm and Residue Summation

It is comforting to check the pole
search algorithm. A simple check on

the n=0 poles found in Step a of the previous section is easily performed to show (e.g., see Figure 4) that
for the pole locations in the complex λ-plane the conditions |γj a| ~ 20 for j= 1, 2 so that the asymptotic expan-
sions [Olver, 1965] can be used for the Bessel functions and their derivatives in equations (33), (26), and (27). It
is found from equation (33) that

D0 λð Þe� 1

γ1
ffiffiffiffiffi
ab

p sinh γ1 b� að Þð Þ þ γ1
γ2
cosh γ1 b� að Þð Þ

� 	
: (58)

The pole search algorithm including the search grid and the complex Newton’s method was used to find the

zeroes of equation (58) that correspond to the n=0 poles λ
kð Þ
0 . For the cases studied the pole locations or zer-

oes of equation (58) agreed to several decimal places with the values of λ
kð Þ
0 found by using the more general

expression given in equation (33). This provides a good check on the Bessel function computations and on
the pole search algorithm. It is also interesting to note that the expression in equation (58) is identical to
the dispersion relation for TE surface waves guided along a dielectric slab backed by a metallic ground plane
[Mittra and Lee, 1971]. This is not too surprising because the asymptotic expansion is equivalent to a planar
problem limit where the cylinder radius becomes much larger than a wavelength.

As the thickness of the standoff layer
increases beyond the depth of investi-
gation of the transmitted signal, the
pole contributions to the logging tool
responses are expected to become
dominant. The depth of investigation
is of the order of the skin depth of
the EM fields in the standoff medium.
In the limit of a standoff layer thickness
greater than the depth of investigation
most of the contribution to the tool
response should come from the wave-
guide modes with negligible contribu-
tion from the branch cut integrals. To
demonstrate this fact and to check
the residue summation we computed
the response of a 1.1 GHz microwave
dielectric logging tool in a two-layered
medium. The tool has a longitudinally

Figure 5. Plot of the real and imaginary parts of the residues for the poles
in Figure 4. Observe that for a 1.0 cm thick standoff only a few poles have
nonzero residues; i.e., the magnetic field on the cylinder surface is effec-
tively determined by the branch line integrals.

Figure 6. Four branches of poles found for a 3 cm thick standoff layer. The
propagating waveguide modes have poles that lie closest to the real axis
and propagate with wave numbers close to that of layer 1.
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oriented point magnetic dipole trans-
mitter and two receivers located
on a metal cylinder with radius
a=0.1016m (4 in.). The transmitter is
located on the cylinder at (a,ϕ, z) =
(0.1016, 0.0, 0.0), and the two receivers
are located on the cylinder at (a,ϕ1, z1) =
(0.1016, 0.0, 0.08) and (a,ϕ2, z2) =
(0.1016, 0.0, 0.12). The measured tool
responses are the phase shifts and
attenuations of the complex magnetic
field in equation (53) between the recei-
vers. The phase shifts and attenuations
betweenthereceiversonthecylindersur-
face can be computed using formulas (7)
and (9) in Freedman and Vogiatzis [1979]
for computing phase shifts in radians
and attenuations in decibels per meter
(dB/m), respectively.

The following test of the pole search algorithm and residue summation was performed. The response of the
logging tool was computed for a two-layer medium with a standoff layer thickness of 10 cm. The EM proper-
ties of the standoff layer are shown in Figure 7. A measure of the depth of penetration or skin depth δ of the
transmitted EM field was estimated by using the imaginary part of the complex propagation constant of the

standoff layer, i.e., δ ¼ k″1
� ��1

. Using the properties of the standoff layer shown in Figure 7 finds δ≈ 7 cm at

1.1 GHz. Therefore, for a standoff layer thickness of 10 cm the phase shift and attenuation should be domi-
nated by the waveguide modes that are trapped in layer 1.

The pole search algorithm located 15 branches (i.e., k= 1, 2, 3⋯, 15) and the 263 distinct poles shown in
Figure 7. The orders of the 263 poles were n=0, 1, 2,⋯, 49. Poles with higher orders were not included in the
search. The magnetic fields at the two receivers were computed by summing the residues in equation (53).
The computed phase shift in degrees and the attenuation from the residue summation were 288° and
656dB/m, respectively. As a check on these results themagnetic fields at the receivers were computed by using
the solution in equation (55) for the one-layer problem with the same EM properties as the standoff layer (i.e.,
κ1 = 25 and tan δ1 = 1). The computed phase shift and attenuation for the one-layer medium were 290° and
635dB/m, respectively. The two phase shifts agree to within 0.7% and the two attenuations to within about
3%. The close agreement of these results is an important check on the accuracy of the pole search algorithm
and the residue summation computation.
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