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NEW METHOD FOR PREDICTING PROPERTIES 
OF LIVE OILS FROM NMR1

Vivek Anand2 and Robert Freedman2

Crude oil properties such as viscosity, molecular 
composition, and saturate, aromatic, resin, and asphaltene 
(SARA) fractions are crucial parameters for evaluating res-
ervoir quality, producibility, and compartmentalization. In 
the past, physical and empirical models that relate oil prop-
erties to NMR measurements have been developed. How-
ever, the existing models are too simplistic to accurately 
predict properties of crude oils which are complex mixtures 
of hydrocarbon and non-hydrocarbon molecules. 

This paper introduces a model-independent technique 
for quantitative predictions of live-oil properties from NMR 
measurements. The technique assumes that the physics 
connecting NMR measurements to oil properties is implic-
itly contained within a database of NMR and fluid-property 

measurements made on a representative suite of live oils. 
The input measurements are mapped to oil properties using 
a mapping function that is a linear combination of Gaussian 
radial basis functions. The parameters of the mapping func-
tion are determined from the database. The mapping func-
tion predicts properties from input measurements made on 
live oils that are not in the database.

To validate the technique, an extensive database of 
NMR and fluid-property measurements made on live oils at 
elevated temperatures and pressures was acquired. Viscosi-
ties, molecular compositions, and SARA fractions were 
accurately determined from NMR measurements using the 
mapping function technique. 
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INTRODUCTION

Characterization of reservoir fluids is crucial for several 
aspects of reservoir development and management. Fluid 
properties such as viscosity and molecular composition are 
used for calculation of flow rates and sweep efficiencies of 
secondary and tertiary recoveries. Gas-oil ratio (GOR) of 
reservoir fluids is an important parameter for material selec-
tion of well completion and design of surface facilities. 
Asphaltene and wax concentrations are key considerations 
for flow assurance in completions, pipelines, and surface 
facilities. Estimation of fluid properties at different depths 
in a reservoir provides indications of compositional grading 
and compartmentalization within the reservoir (Elshahawi 
et al., 2004; Okuyig et al., 2007; Ratulowski et al., 2004). 
The direct measurement of fluid properties in laboratory is, 
however, time consuming and expensive. As a result, it is 
useful to estimate fluid properties from measurements such 
as NMR, which can be performed with relative ease and at 
downhole temperature and pressure conditions.

NMR response of fluids provides a link between micro-
scopic molecular motions and macroscopic properties such 
as viscosity and composition. The relationship between  
viscosity and relaxation time of pure fluids was established 
by the phenomenological relaxation theory of bloembergen, 
Purcell and Pound (1948) referred to as the bPP theory. 
brown (1961) studied proton relaxation in a suite of crude 
oils with various compositions and viscosities. The viscosi-
ties of the samples varied from about 0.5 to 400 cp. He found 
that the relaxation times showed an inverse dependence 
on viscosity over the entire range. Since the early work of 
brown, several physical and empirical models have been 
proposed that relate crude oil properties to NMR response. 
However, the predictive power of these models is limited 
for several reasons. First, crude oils are complex mixtures of 
linear, branched, cyclic, and aromatic hydrocarbons. They 
also contain compounds with sulfur, oxygen, and nitrogen 
atoms in addition to small concentrations of metals such  
as nickel and vanadium. As a result, NMR response of  
crude oils is governed by a multitude of intra- and inter- 
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molecular interactions between the constituents. It is difficult 
to accurately describe all such interactions by simple physi-
cal or empirical models. Second, the detailed information 
contained in the shapes of T1 or T2 distributions is gener-
ally not used in the models. Last, the empirical constants 
involved in the models are not universal, and may differ by 
as much as a factor of two for different oils. 

This paper provides a new model-independent tech-
nique for quantitative prediction of live-oil properties from 
NMR measurements. The basis of the proposed technique 
is the assumption that there exists a deterministic and 
unique relationship between NMR response and live-oil 
properties. This relationship, although not known in closed 
functional form, is sufficiently contained in a database of 
NMR and fluid-property measurements made on a suite  
of live oils. The technique proposes that the relationship can 
be approximated by a multivariate function that maps the 
NMR measurements to the fluid properties. The mapping  
function is a linear combination of Gaussian radial basis 
functions (RBFs). The coefficients of the mapping function 
are uniquely determined from the database measurements 
such that the NMR measurements for each live oil in the 
database are exactly mapped to the corresponding fluid 
properties. For a live-oil sample not included in the data-
base, a prediction of the fluid-property is obtained from 
NMR measurements made on this oil using the mapping 
function. Such a prediction is thus consistent with the data-
base measurements. If the database is sufficiently populated 
with representative live-oil samples, the proposed technique 
is capable of providing accurate predictions. The domain of 
validity of the mapping function is the range of fluid proper-
ties and measurement conditions (temperature and pressure) 
included in the database. For example, consider a database 
used to construct a mapping function for predicting viscosity 
of live oils from NMR measurements. Suppose that the data-
base contains measurements on oils with viscosity between 
0.1 and 100 cp. Then the mapping function can be used to 
accurately predict oil viscosity in the range from 0.1 to 100 
cp; however the predictions will not be accurate for viscosities 
significantly outside this range. 

The proposed technique offers several advantages over 
the conventional approach based on empirical or physical 
models. First, it is not required to construct an approximate 
equation or model to relate NMR measurements to live oil 
properties. The mapping function is general, easy to con-
struct and can accurately represent any continuous nonlin-
ear functional relationship. Once the mapping function is  
constructed, there are no unknown empirical parameters that 
need to be adjusted. Another advantage of this technique  
is that that it is easy to incorporate many different types of 
auxiliary measurements as inputs including those described 
by vectors or distributions. Therefore, the detailed informa-
tion contained in the shapes of NMR distributions is applied 
to provide accurate predictions of fluid properties. 

The mapping function technique also offers several 
advantages compared to other database approaches such 

as Artificial Neural Networks (ANN) (Haykin, 1999). For 
instance, implementation of ANN requires computationally 
expensive and lengthy iterative training which may not con-
verge to a solution. In contrast, the present approach is a  
single-shot method that requires no iterative training. The 
mathematical properties of RbF mapping ensure that a 
unique solution always exists. Additionally, this technique 
requires a smaller database for accurate predictions com-
pared to most ANN based methods. The technique is appli-
cable to a wide variety of complex petrophysical problems 
for which a database of measurements is available (Freedman, 
2006). Anand et al. (2011) used the mapping technique to 
predict effective permeability to oil in sandstones and car-
bonates from well-log data. Gao et al. (2011) applied the 
technique to predict capillary pressure curves in complex 
carbonate rocks from NMR T2 distributions. Recently, 
Freedman et al. (2012) described another application of  
the technique for accurate prediction of formation-thermal-
neutron capture cross sections from well-logging data. 

The paper is organized as follows. In the second  
section, a detailed mathematical background for the mapping  
function technique is provided. The third section describes 
the database of NMR and fluid-property measurements made 
on live crude oils. The fourth section illustrates the applica-
tion of the proposed technique for prediction of viscosities, 
molecular compositions, and saturate, aromatic, resin, and 
asphaltene (SARA) fractions of live oils using the laboratory 
database. The last section discusses the effect of measurement 
noise on the accuracy of the predictions.

RADIAL BASIS FUNCTION MAPPING

Radial basis functions (RbF) are used for several  
applications in numerical and scientific computing such as 
solution of partial differential equations, ANNs, surface 
reconstruction, computer-aided design (CAD), computer 
graphics, and multivariate interpolation. A unique property 
of RbFs is that they provide excellent interpolants for high-
dimensionality data sets of poorly distributed data points. 
This property follows from the mathematical result that 
the linear system of interpolation equations with RbFs is 
invertible under very mild conditions. The theoretical back-
ground for the invertibility of the RbF interpolation matrix 
was established in a seminal paper by Micchelli (1986). 
Franke (1982) published a survey paper on the evaluation 
of 29 interpolating methods, and concluded that the interpo-
lation by multiquadric RbFs outperformed most methods. 
The application of RbFs for numerical solution of ellip-
tic, hyperbolic, and parabolic differential equations was 
developed by Kansa (1990). Since Kansa’s work, RbFs are  
extensively used for approximating scattered, non-uniformly 
distributed data. 

The traditional approach for solving an inverse problem 
involves fitting a theoretical or empirical model to measure-
ments (Tarantola, 2005). This approach is, in general, not 
suited to those reservoir characterization problems that are 
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too complex to be accurately described by simple forward 
models. For example, the complex molecular interactions 
that govern NMR relaxation of crude oils cannot be fully 
described by simple forward models. The present paper is 
based on a novel application of RbFs for solving inverse 
problems. This technique was first introduced and demon-
strated by Freedman (2006) as a method for solving complex 
inverse problems for which accurate forward models are 
unknown. Freedman applied RbFs, inter alia, to the predic-
tion of viscosities and molecular compositions of dead oils 
from NMR measurements. 

Let us assume that there exists a database consisting of 
NMR measurements and live-oil properties at corresponding 
temperature and pressure conditions. The database measure-
ments for each oil are separated into inputs and outputs. 
The inputs contain NMR measurements such as T1 or T2
distributions, as well as auxiliary measurements including 
temperature and pressure. The outputs contain the fluid-
property to be predicted. The mapping function technique 
proposes that the underlying physical relationship between 
database inputs and outputs can be approximated by a 
mapping function which is a linear combination of Gauss-
ian RBFs. The coefficients of the mapping function are 
calibrated using the database. The mathematical properties of 
Gaussian RbFs ensure that the mapping function is unique. 
The mapping function can be visualized as a multivariate 
interpolation between database inputs and outputs. For a 
sample not included in the database, the mapping function 
can be used to predict the required output from the input 
measurements made on this sample. The mathematical 
formulation of the mapping technique is described in the 
next subsection. 

Mathematical Formulation

The notation in this section follows the notation in the 
Freedman (2006) paper. Let f (x), Rnx  and Rmf  be a 
real-valued vector function of n variables, and let values of 
f (xi ) = yi  be given at N distinct points, i ,x  i = 1,2,…,N. The 

values of ix  and yi  represent the database inputs and out-
puts, respectively. The interpolation problem is to construct 
the function F(x)  that approximates f (x)  and satisfies the 
interpolation equations, 

 
F( ) = yi, i =1,2 N.ix ,…, (1)

The interpolation function is constructed as a linear combi-
nation of RbFs given as, 

 

= ci x xi )(
i=1

N

F(x) . (2)

The nonlinear functions x xi )(  are called “radial” 
because the argument of the function depends only on the 
distance between, not the direction, of xi , from an arbitrary 

input vector at which the function is to be evaluated. The 
argument is given by the Euclidean norm in the n-dimen-
sional hyperspace, i.e.,

 

= (xm mx , )2

m=1

n

.x xi i (3)

The forms of commonly used RbFs are listed in Table 1.  
 
The real-valued coefficients c  of the interpolating func-

tion in Equation 2 can be obtained by requiring that the inter-
polation equations are satisfied exactly. Thus, Equations 1 
and 2 imply that the coefficients can be obtained by solving 
the following linear system of equations,

 

Φ⋅C = Y , (4)

where C is a matrix whose rows consist of the coefficient 
vectors i.e.,

 

C =

c1,1 c1,2 . c1,m

c2,1 c2,2 . c2,m
. . . .. . . .. . . .

cN,1 cN, 2 .

.

.

.

.

.

. cN ,m

. (5)

The matrices Φ and Y are N × N  and N ×m  matrices, 
respectively. They contain the RbF and database output  
vectors and are given by,
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(7)

Table 1–Forms of commonly used RBFs.

ϕ(r) = r linear
ϕ(r) = r 2 log(r) thin-plate spline
ϕ(r) = exp(−βr 2 ) Gaussian
ϕ(r) = (r 2 + γ 2 )1/2 multiquadrics

linearϕ(r) = r linear
ϕ(r) = r 2 log(r) thin-plate spline
ϕ(r) = exp(−βr 2 ) Gaussian
ϕ(r) = (r 2 + γ 2 )1/2 multiquadrics

thin-plate spline
ϕ(r) = r linear
ϕ(r) = r 2 log(r) thin-plate spline
ϕ(r) = exp(−βr 2 ) Gaussian
ϕ(r) = (r 2 + γ 2 )1/2 multiquadrics

Gaussian

ϕ(r) = r linear
ϕ(r) = r 2 log(r) thin-plate spline
ϕ(r) = exp(−βr 2 ) Gaussian
ϕ(r) = (r 2 + γ 2 )1/2 multiquadricsmultiquadradics
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It can be mathematically proved that the matrix Φ is non-sin-
gular for certain functional forms of RbFs such as Gaussian 
and multiquadrics. This property ensures that the mapping 
function of Equation 2 is unique. Hence, using a database 
with N samples, a mapping function that is consistent with 
the measurements can be uniquely constructed from Equa-
tions 2 and 4. For a sample not included in the database, the 
desired output y  can be obtained by evaluating the mapping 
function at the corresponding input x  i.e., 

 
= .F(x)y (8)

The mapping function concept is shown pictorially in 
Fig. 1. The database inputs ( 1x , 2x ,…) are mapped to the 
corresponding database outputs ( 1y , 2y ,…) using a func-
tion F(x). The mapping function is a linear combination of 
RBFs. The expansion coefficients are uniquely determined 
such that the interpolation equations (1) are exactly satisfied 
for N samples in the database. The output y  for a sample x
that is not included in the database can be calculated using 
the mapping function with known coefficients. 

Normalized Gaussian RBF

One of the most commonly used RbFs is the normalized 
Gaussian RbF given as,

=
exp

2

2si
2

exp
2si

2
i=1

N
.x xi )(

x xi

2x xi

(9)

The normalization scales the RbF such that the function value 
lies between 0 and 1. A Gaussian RbF in two dimensions  
is shown in Fig. 2. Substituting the expression for normalized  
Gaussian RbF in Equation 2 the mapping function is  
given as,

 

exp
2si

2
i=1

N 2x xi

=
i=1

N

exp
2

2si
2

x xici

F(x) . (10)

Hence, the mapping function is a linear combination  
of Gaussian functions whose centers are located at the data-
base inputs. 

The widths of the Gaussian RbFs, si , determine the 
topographical behavior of the interpolating function. If the 
widths are too large (si ), then the interpolating function 
has a flat topography. The function attains a constant value 
equal to the mean of database outputs as shown here,

 
limsi

= i=1

N

N .F(x)
yi

(11)

On the other hand, if the widths are too small, the  
function topography has multiple “hills” and “valleys”. Thus, 
for optimal interpolation, the widths of the Gaussian RbFs 
are chosen such that they are proportional to the Euclidian 
nearest-neighbor distances in the input space. This choice 
ensures that the input space is populated by basis func-
tions that have some overlap with the nearest neighbors and  
negligible overlap with the more distant ones. The idea is  
illustrated in a later section in which RbF interpolation  
is applied for prediction of live-oil properties from  
NMR measurements. 

Physical Interpretation

The physical understanding of RbF interpolation can be 
obtained by considering the special case in which there is 

Fig. 1–Pictorial representation of the model-
independent mapping function technique. The inputs 
are mapped to the outputs using a mapping function F  
which is a linear combination of radial basis functions.
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negligible overlap between Gaussian RbFs. Let us rewrite 
the interpolation equations, Equation 1, in terms of the 
mapping function as follows,

) =

+
i j

1+
i j

.

exp
2si

2
i=1

N 2x xij

i=1

N

cicj

F(xxj

exp
2

2si
2

x xij

(12)

If the overlap between RbFs is neglected, the summation in 
Equation 12 reduces to, 

 

F y = .(xj) yj cj (13)

Substituting Equation 13 in Equation 10 results in the  
following form of the mapping function,

 

) = .

exp
2si

2
i=1

N 2x xi

i=1

N

yi

F(xx

exp
2

2si
2

x xi

(14)

Thus, the interpolating function at x  is the weighted average 
of the database outputs such that the weights show Gauss-
ian dependence on the proximity of x  with database inputs.  
The localized nature of Gaussian functions implies that 
the mapping function has the largest contribution from the  
database inputs that are nearest to x . The database inputs 
that are far removed from x  make a negligible contribution 
to the function.

DATABASE CONSTRUCTION

This section describes the construction of a database  
consisting of NMR and fluid-property measurements made 
on live oils at elevated temperature and pressure conditions. 
The database is used in the subsequent section for predic-
tion of properties of live oils using the mapping technique. 
before measurements are performed, each live-oil sample 
is equilibrated for 1 to 5 days in a pressure cell at a known 
gas-oil ratio. 

NMR Measurements 

Acquisition of a database of NMR measurements with 
live oils was started in 2005 after acquisition of a 2 MHz 
Maran spectrometer purchased from Resonance Instru-
ments, Inc. A Temco pressure cell, rated to maximum oper-
ating conditions of 10,000 psi and 110°C, was installed for 
high pressure and high temperature measurements. Fig. 3  
shows the schematic diagram of the pressure cell. Live oil 
was charged into the ceramic tube of the sample holder 
through the ceramic inlet tube. The temperature inside the 
holder was maintained by circulating Fluorinert through the 
gap between the ceramic and PEEK tubes as shown in the 
figure. A second inlet for Fluorinert maintained the pressure 
through the displacement of the PEEK piston. 

Three types of NMR measurements were performed 
to obtain T1, T2 , and diffusivity distributions of live oils. 
T1 distributions were measured using saturation-recovery 
pulse sequence. In most cases, joint distributions of T1 and 
T2 were obtained with two-dimensional measurements in 
which CPMG sequences were preceded by polarization 
periods with varying wait times. Ten logarithmically spaced 
wait times were used to measure the T1 relaxation after  
saturating the spins with several 90° pulses. T2 distributions 
were also obtained using CPMG pulse sequence with a  
minimal echo spacing of 0.3 ms and a four-step phase 
cycling. The T2 values were free of diffusion because the 

Fig. 3–Schematic of Temco pressure cell. The live-oil samples were maintained above their bubblepoint pressures 
so that they remain in a single phase. 
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Fig. 4–T2 distributions of 30 live-oil samples. The viscosities of the samples at corresponding temperature and 
pressure are also shown. 

Fig. 5–Diffusion distributions of 25 live-oil samples. The viscosities of the samples at corresponding temperature and 
pressure are also shown. 
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spectrometer had no background gradient. Fig. 4 shows the 
normalized T2 distributions of 30 live-oil samples in the 
database. Diffusivity distributions of live oils were obtained 
using the pulsed-field-gradient pulse sequence. Fig. 5 
shows the diffusivity distributions of 25 of the 30 live-oil 
samples in the database.

 
Fluid-Property Measurements

The fluid-property measurements on live oils included 
viscosity, molecular composition, and SARA fraction. Vis-
cosity measurements were made at the same temperature and 
pressure conditions at which NMR measurements were made. 
A brief description of the measurements is included below. 

Viscosity

An electromagnetic (EM) viscometer was used for  
measuring viscosity of live oils at elevated temperatures and 
pressures. The viscosity measurement by an EM viscometer 
is based on the following principle. A magnetic force is 
applied to a piston that is immersed in the fluid. The viscous 
damping force of the fluid on the piston is used to derive an 
accurate fluid viscosity. Table A1 in Appendix A shows the 
viscosities and GORs of 30 live-oil samples in the database. 

Molecular composition 

The molecular composition of live oils in the database 
was measured using gas chromatography (GC). The weight 
fraction of components with carbon number ranging from 
1 to 30 and higher was obtained by elutriating the fractions 
with an inert gas. Fig. 6 shows the molecular compositions 
and corresponding viscosities of 25 live oils for which the 
diffusivity distributions are shown in Fig. 5. 

SARA fraction 

The SARA fractions of crude oils were obtained using 
the standard ASTM technique adopted at Schlumberger 
DBR Technology Center. The live-oil sample was flashed 
in an inert nitrogen environment to remove all volatiles 
from the oil. The flashed oil was separated into asphaltene 
and maltene fractions by precipitating asphaltenes with an 
excess of hot heptane. The maltene fractions were further 
separated into saturates, aromatics, and resins by selective 
elutriation on activated alumina column. Saturates were 
elutriated using n-heptane, aromatics using toluene, and 
resins using equal volumes of dichloromethane and metha-
nol. The weights of each fraction were carefully measured 
after evaporating the solvent over a hot plate in an inert N2

Fig. 6–Molecular composition of 25 live oils measured by GC. 
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atmosphere. A combined SARA estimate expressed as a 
weight percentage was obtained from the weights of the 
fractions. A quality check was done by ensuring that the 
error in the yield was within 3%. 

APPLICATION OF RBF MAPPING 

This section describes the application of the RbF  
mapping technique for estimating live-oil properties using 
the laboratory database. The mapping technique does not 
require construction of a physical model, and assumes that 
the underlying physical relationship between NMR mea-
surements and fluid properties is contained in the database. 

Viscosity 

NMR relaxation in fluids is sensitive to fluid viscosity 
due to the dependence of rotational and translational cor-
relation times on the viscosity. The phenomenological bPP 
theory postulates that in the extreme narrowing limit, the 
relaxation rate of a pure fluid is proportional to the ratio of 
fluid viscosity (η) and temperature (T ) as shown below,

1
T1

= 1
T2 T . (15)

The BPP theory assumes that the most significant relax-
ation mechanism is the intramolecular dipole interactions 
between nuclei. However, this assumption is not valid for 
live crude oils because methane molecules relax by different 
mechanisms compared to larger chain-length hydrocarbons. 
Lo et al. (2000) developed a mixing rule that correlated 
the viscosity of mixtures of methane and higher alkanes 
to the relaxation time, temperature, and gas-oil ratio. This  
mixing rule assumes that higher alkanes in the mixture relax 
by intramolecular dipole interactions while methane relaxes 
by spin rotation and intermolecular interactions. The Lo et al. 
relationship is given as,

 

= aT
T2,LM f (GOR) , (16)

where T2,LM is the logarithmic mean of the T2 distribution 
and f (GOR) is an empirically determined function of gas-
oil ratio. The parameters for the empirical relationship 
were obtained from T2 and viscosity measurements with sev-
eral methane-alkane mixtures. Equation 16 is frequently 
employed for prediction of viscosity of live crude oils. 
However, the accuracy of the predictions is limited for sev-
eral reasons. First, the viscosity predictions in Equation 16 
depend only on the logarithmic mean of the T2 distributions, 
i.e., the shapes of the distributions are not taken into account. 
Second, the effect of pressure on the viscosity of the oils 
is not explicitly incorporated in the model (Winkler et al., 
2004). Third, the empirical constant a needs to be calibrated 
for different crude oil samples, and the variance in the value 

can cause significant errors in the predictions. Last, the mix-
ing rule is derived for mixtures of linear alkanes; hence, the 
proposed relationship may not be valid if nonlinear compo-
nents are present in the crude oil. 

RbF mapping is ideally suited for predicting the viscos-
ity of complex systems such as crude oils from relaxation 
time or diffusivity distribution. The technique is indepen-
dent of a physical or empirical model, and incorporates the 
shape of the distribution in the prediction. using Equation 
10, viscosity can be expressed as a linear combination of 
Gaussian RbFs whose arguments include the amplitudes 
of T2 or D distribution, temperature, pressure, and GOR as 
shown below,

 

=
exp AT AT,

exp
i=1

N
.i=1

N

ci 2si
2

i
2

AT AT,

2si
2

i
2 (17)

Here AT  is a vector that contains the amplitudes of T2 distri-
bution A(T2) and/or diffusivity distribution A(D), tempera-
ture, pressure and GOR of a live-oil sample, 

 
= (A( ),A(D),T, P,GOR).AT AT T2

 
(18)

The amplitudes of T2 or D distribution are normalized with 
the largest respective values to make the inputs dimension-
less, and to eliminate the dependence on hardware or soft-
ware settings. Raw echoes can also be used instead of the 
amplitudes of T2 or D distribution since both data contain 
the same information. In addition, the values of temperature, 
pressure, and GOR in the input vector are also made dimen-
sionless by normalizing with the respective largest value in 
the database. The coefficient c is determined from the solu-
tion of interpolation equations, Equation 4. The required 
matrices Φ and Y are obtained using the live oil database of 
NMR and viscosity measurements. Specifically,  

 

i, j = 1 i, j N ,

exp AT,

exp
j=1

N

2sj
2

j
2

AT AT,

2sj
2

j,i

AT,i

2

 

(19)

 

y = ,i iy

 

(20)

where AT  is given by Equation 18 and N is the number of  
live-oil samples in the database. The viscosity of a live oil not 
contained in the database can be predicted from Equation 17 
using the measured inputs for this sample.

The mapping function of Equation 17 was used for  
predicting viscosities of live oils using the laboratory database  
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of the previous section. The input vector for each live oil 
consisted of normalized amplitudes of T2 distribution and 
normalized temperature, pressure, and GOR. The T2 distri-
bution of live oil 16 was found to be anomalous and thus was 
not included in the prediction. To ensure sufficient overlap 
between RbFs, the widths sj were chosen to be proportional 
to the Euclidian nearest-neighbor (NN) distances as shown 
in the following equation,

 
s= NN( )j ,j α (21)

where the proportionality constant α is of order unity. This 
choice of the widths of the RbFs ensures that there are at 
least a few samples in the database that contribute to the 
mapping function and therefore to the prediction of the fluid 
properties of an unknown sample. Table A1 in Appendix A 
lists the NN distances in the input space. In practice, choos-
ing the constant α close to 1 provides accurate predictions, 
however, a more optimal value of α can be determined by 
simple trial and error by selecting a value that minimizes 
the deviation between the measured and predicted values of 
viscosities. In this case, the optimal α was 1.5. Fig. 7 shows 
the comparison of predicted live-oil viscosities with the val-
ues measured in laboratory. The predictions were obtained 
using the “leave one out” method whereby one live-oil 
sample was sequentially removed from the database, and 
its viscosity was predicted from the interpolating function 
obtained using the remaining samples. The viscosities are 

predicted within less than a factor of two for most oils over 
the entire range.

Viscosities were also predicted using the amplitudes 
of diffusivity and T2 distributions as inputs for RbF map-
ping. Fig. 8 shows the comparison of viscosities of 24 live 
oils predicted using Equation 17 with the values measured 
in the laboratory. As mentioned previously, live oil 16 was 
not included in the prediction. The input vector included 
normalized amplitudes of T2 and D distribution, normal-
ized temperature, pressure, and GOR. The widths of RbFs 
were heuristically determined such that α in Equation 21 was 
equal to 1.7. The viscosities are predicted within less than a 
factor of 2 for most cases. A final and important conclusion 
is that sufficient accuracy can be obtained from a relatively 
small database of 24 to 30 samples. 

Molecular Composition 

It is well known that the diffusivity of a spherical  
molecule suspended in a solvent is inversely proportional  
to its size. This dependence is clearly elucidated in the 
Stokes-Einstein relationship,

 

D = kBT
6 as

, (22)

where as is the radius of the diffusing spherical particles, kb
is the boltzmann’s constant, T is the temperature, and η is 

Fig. 7–Comparison of live-oil viscosities predicted from 
T2 distributions using the mapping technique with the 
values measured in the laboratory. The solid black line 
is the best-fit line and the blue dashed lines are located 
at the factor of two deviation. In general, the viscosities 
are predicted within less than a factor of two over the 
entire range. 

Fig. 8–Comparison of live-oil viscosities predicted from  
T2 and diffusivity distributions using the mapping tech-
nique with the values measured in the laboratory. 
The solid black line is the best-fit line and the blue 
dashed lines are located at the factor of two deviation. 
In general, the viscosities are predicted within less than 
a factor of two over the entire range. 
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the viscosity of the solvent. Equation 22 is strictly valid for 
hard spheres at dilute concentrations such that the interac-
tions between spheres and the resulting effect on viscosity 
can be neglected. Similarly, the relaxation time of a mol-
ecule is related to its size. Smaller molecules have longer 
relaxation time, and vice versa. Thus, the molecular 
composition of a mixture can be predicted from T2 or D dis-
tribution if the interactions between different components 
can be theoretically modeled. 

For molecules with internal degrees of freedom e.g. 
polymer melts, diffusivity is still related to the size of the 
molecule; however, Equation 22 is no longer applicable. In 
linear polymers, diffusivity is found to scale inversely with 
the number of segments, Ns, as shown below, 

 
D N .s (23)

The exponent κ ranges from ½ to 2 depending on whether the  
hydrodynamic interactions are significant and on entanglement 
of polymeric chains (Rouse, 1953; Zimm, 1955). Freed et al. 

(2007) postulated that in a mixture of linear n-alkanes, the 
diffusivity of a component scales with the chain length as 
shown here, 

 

D =Ns,i
vg.i (24)

The term g is dependent on bulk properties such as  
viscosity and composition. A similar scaling law between 
T2 and chain length was also proposed. Freed et al. applied 
the physical model to accurately predict the chain-length  
distribution of dead crude oil samples which had high 
concentration of paraffins. Another model for predicting 
the composition of crude oil was proposed by Heaton and 
Freedman (2005). However, the accuracy of compositions 
predicted by physical models is limited because the underly-
ing assumptions made in derivation of the models may not be 
valid for real crude oils. For example, the model developed 
by Freed et al. (2007) assumes that the crude oil is a mixture 
of linear alkanes. The presence of components other than  

Fig. 9–Comparison of molecular compositions of nine live oils predicted from D distribution using the mapping 
technique with those measured in the lab using GC. Compositions are predicted within 0.5 wt % on average.
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linear alkanes, such as branched hydrocarbons, aromatics, and 
asphaltenes can influence the accuracy of the physical model.

The mapping technique can be easily applied for predict-
ing molecular compositions from T2 or D distributions. The  
multivariate function of Equation 10 maps the database  
inputs to compositions Cm  such that the coefficients c are 
vector quantities of same dimensions as the compositions. 
Mathematically,  

 

=Cm

exp AT AT,

exp
i=1

N
.i=1

N

ci 2si
2

i
2

AT AT,

2si
2

i
2 (25)

The input vector AT  consists of amplitudes of T2 or D  
distribution, temperature, pressure, and GOR. Similar to the 
prediction of viscosity, the amplitudes of T2 or D distribution,  
temperature, pressure and GOR are normalized to unity  
with appropriate factors. 

The prediction of molecular composition from Equation 
25 was tested on the database of 25 live oils. The composi-
tions of these oils were measured in the laboratory using GC.  
The comparison of the predicted compositions with the mea-
sured values is shown in Fig. 9. To save space, the com-
parison is shown for nine of the live oils in the database. 
These results are representative of those for the rest of the 
samples in the database. Compositions were predicted from 
Equation 25 using normalized amplitudes of D distributions 
and normalized temperature, pressure, and GOR as inputs. 
The widths of the RbFs were heuristically determined such 
that α in Equation 21 was equal to 1, although the predictions 
were relatively insensitive to values of α from 0.2 to 1.  
The compositions were predicted using the leave one 
out method. The average absolute error in the predicted  
compositions was determined from Equation 26 to be 0.5 wt %, 

 

= 1
N

pred

i,k

meas

30i=1

30

k=1

N

,Cm

Cm
i,k

Cm
(26)

Fig. 10–Comparison of molecular compositions of nine live oils predicted from T2 and D distribution using the mapping 
technique with those measured in the lab using GC. Compositions are predicted within 0.5 wt % on average.
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where predCm  and measCm  are the predicted and measured  
compositions, respectively. The inner sum in the above 
equation goes over the number of GC components 
and the outer sum goes over the number of samples in  
the database. 

An excellent correlation between measured and pre-
dicted compositions is observed for most oils in the database. 
The predictions of molecular compositions remain similar 
for most live oils if GOR is removed from the inputs. This is 
because the information about the amount of dissolved gas  
is implicitly contained in the D distributions of live oils. 
However, for a few live oils, a slight improvement in the 
accuracy of predicted compositions was observed if GOR 
was included in the input vector. 

Fig. 10 shows the compositions predicted using ampli-
tudes of T2 and D distributions, temperature, pressure, 
and GOR as inputs for RbF mapping. The widths were 
heuristically determined such that α in Equation 21 was 
equal to 1.0. An excellent agreement between predicted 
and measured compositions is observed. The accuracy of 
predicted molecular composition is improved marginally 
by including the amplitudes of D and T2 distribution in the 
input vector. 

SARA Fractions

The prediction of SARA fractions of crude oils is impor-
tant for fluid characterization. SARA analysis helps to provide 
a consistent basis for comparing oil samples by characterizing 
the sample according to polarizability (Alboudwarej et al., 
2006). SARA fractions are also used to model in-situ com-
bustion, devise flow assurance strategies for prevention of  
asphaltene deposition, and assess the economics of a potential 
field development with less uncertainty. 

NMR relaxation provides an excellent probe for ana-
lyzing different species present in a crude oil. For example, 
Zhang et al. (2002) found that for heavy oils, T1/T2 ratio 
is correlated to the asphaltene content. Hurlimann et al. 
(2008) showed that the diffusivity of dead oils with greater 
than 1% asphaltene content deviates from the established 
alkane correlation with T2 relaxation time. This deviation 
was explained to arise from shortening of crude oil relax-
ation time in the presence of asphaltenes due to hindered 
rotational motion of maltene molecules. Additionally, Hurli-
mann et al. found that the slope of the distributions in D-T2
domain is correlated to the asphaltene content. However, the 
results obtained are qualitative.

Fig. 11–Comparison of SARA fractions of live oils predicted from RBF mapping with the values measured in the 
laboratory. SARA fractions are predicted within 13% average absolute deviation. 
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A quantitative prediction of SARA fractions of live 
oils can be obtained from NMR measurements using 
RbF mapping. Analogous to the prediction of molecular 
composition, SARA content of the oils can be predicted 
from Equation 10 such that the coefficients ci are four-
dimensional vectors,                                                      

 

SARA =
ci

i=1

N

.
exp AT,

exp
i=1

N

2si
2

i
2

AT AT,

2si
2

i

AT

2 (27)

Fig. 11 shows the comparison of SARA fractions  
predicted from Equation 27 with the laboratory-measured 
values for 16 live oils in the database. The input vector, AT,
included normalized amplitudes of T2 distribution, normal-
ized temperature, pressure, and GOR. The widths were 
determined such that α in Equation 21 was equal to 0.25.   
The SARA fractions are predicted within 13% average  
absolute deviation. 

 
EFFECT OF NOISE ON RBF MAPPING 

RbF mapping technique develops a continuous, 
smooth mapping between database inputs and outputs. As 
a result, a small variation in the inputs due to uncertainty 
in measurements or noise in the data leads to only a small 
variation in the prediction of outputs. This argument can 
be intuitively understood by recalling that RbF mapping 

function at x  is a weighted average of terms that depend
on the Euclidean distances of x  from database inputs.
Small errors in measurement of x  result in minor modifica-
tions of the distances, thereby leading to a small variation in  
the outputs. 

The error in RbF predictions due to noise is illustrated 
by numerical analysis of the variance in the output as a func-
tion of noise in the input measurement. For the live-oil sam-
ple 1, T2 distributions at different noise levels were simu-
lated by adding white Gaussian noise to the raw echo data. 
The resulting distributions were used for predicting the vis-
cosity using the interpolating function of Equation 17. As is 
shown in Fig. 12, the prediction of viscosity changes by less 
than 10% even when the noise in T2 distribution increases 
by 100%. The analysis shows that the mapping technique is 
robust and relatively insensitive to the measurement noise. 
Appendix b derives equations that can be used to estimate 
the uncertainties in predicted outputs that result from mea-
surement errors. 

 
CONCLUSIONS

The physical and empirical models that relate NMR 
measurements to crude oil properties have limited accu-
racy because of the inherent complexity of crude oil 
systems. A model-independent technique is proposed 
for predicting properties of live crude oils from NMR 
measurements. The proposed technique assumes that 
the underlying physical relationship between NMR 
response and crude-oil properties is contained in a data-
base of measurements. This relationship is approximated 
by a mapping function which is a linear combination of  
Gaussian radial basis functions. The coefficients of the 
mapping function are uniquely determined such that the 
function is exactly satisfied for each live-oil sample in 
the database. Once the coefficients are determined from 
the database, the mapping function contains no adjustable 
parameters. For a sample not contained in the database, 
the desired fluid property can be accurately predicted 
from the mapping function. A small database of 24 to 
30 samples is required for obtaining sufficient accuracy. 
Numerical analysis shows that the technique is robust in 
the presence of measurement noise. 

It is worth noting that the model-independent  
technique is applicable for solving any reservoir charac-
terization problem for which a representative database  
is available. 
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Fig. 12–Effect of noise on the prediction of viscosity 
using RBF mapping. The upper panel shows the NMR 
echo data and the corresponding T2 distribution for 
live-oil sample 1. The lower panel shows the data with 
twice the noise and the corresponding T2 distribution. 
The RBF viscosity predictions in the two cases change 
by less than 10%.
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APPENDIX A APPENDIX B

This Appendix derives some general equations that 
can be used to compute estimates of the errors in live-oil 
properties predicted from the RbF mapping function shown 
in Equation 10. uncertainties in the predicted live-oil  
properties will result from errors in the input measurement  
vector, x . To make the analysis tractable, we assume that 
the database measurements are free of errors. This is not  
a bad assumption since these are typically measured in a 
laboratory under highly controlled conditions.

The mapping function can be written in the form,

 

=F(x)
N(x)
D(x)

, (b1)

where we have defined the functions,

 

=N(x) ci
i=1

N

exp
2

2si
2

x xi , (b2)

and

 

=
i=1

N

exp
2

2si
2

x xiD(x) . (b3)

The variances in the live-oil properties predicted by the RbF 
mapping function can be written in the form, 

 

2(F )= ( F
x )2

2( )
l=1

n

l
xl , (b4)

where it has been assumed that the measurements errors are 
uncorrelated (Freedman and Auburn, 1985). In Equation 
b4, the 2( )xl  are the variances (i.e., the square of standard  
deviations) in the measurements.

Taking partial derivatives in Equation B1 one finds that,

 

=
D

D2 ,F
xl

N
xl

D
xl

N

(x)
(b5)

where the partial derivatives in Equations b4 and b5 are to 
be evaluated at the input measurement vector. The deriva-
tives in B5 are easily computed and one finds that,
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2si
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(b6)

Table A1–Viscosities and GOR of 30 live crude oils. 

Sample Temp 
(K)

Pressure 
(psia)

GOR 
(ft3/

STb)

Mea-
sured 

Viscosity  
(cp)

NN 
Distance

1 359 5962 275 3.54 0.1013

2 353 8006 381 1.36 0.6438

3 354 6040 885 0.37 0.7384

4 354 8027 339 2.15 0.5332

5 342 6050 232 4.30 0.5266

6 323 5000 763.52 1.68 0.7917

7 359 5564 275 3.65 0.1013

8 355 8045 502 3.56 0.4951

9 366 4893 628 0.52 0.4303

10 351 7891 228.6 1.83 0.5332

11 350 7877 83.17 1.48 0.5266

12 353 10070 598 2.72 0.2921

13 372 7943 271 2.34 0.5463

14 351 9739 563 2.18 0.3835

15 356 9562 742 1.87 0.2921

16 351 10000 1026 0.74 1.3623

17 355 7994 336 3.43 0.5509

18 355 8000 186.31 1.33 0.7384

19 356 9600 467.11 5.87 1.1125

20 362 7500 763.52 1.15 0.3668

21 362 5800 763.52 1.0 0.3668

22 359 4900 763.52 0.93 0.5068

23 322 7800 763.52 2.12 0.4030

24 323 7000 763.52 1.97 0.4557

25 330 5038 161.58 14.0 1.3445

26 353 8048 759 5.16 0.4030

27 343 1700 21.3 30.3 0.1940

28 343 2350 21.3 32.9 0.1805

29 343 3000 21.3 35.8 0.1805

30 343 1400 11.4 43.6 0.3516



PETROPHYSICS270

Anand and Freedman

August 2012

and

= .D
xl i=1

N
exp

2

2si
2

x xi

si
2

x xi,ll )(
(b7)

Equations b4 through b7 can be used to estimate the standard  
deviations in predicted live-oil properties given estimates of 
the standard deviations in the measurements. 

NOMENCLATURE

Symbol Description [Units]
A Amplitudes of a T1, T2 ,  

or D distribution
[arbitrary]

AT
Concatenated vector  
containing the inputs  
for RbF mapping

[arbitrary]

as Radius of the spherical  
molecule in Equation 22

[m]

Cm
Molecular composition [weight %]

Cm
Average absolute error in  
the prediction of molecular 
composition

[dimensionless]

c Coefficient vector

D Molecular diffusion  
coefficient

[cm2s 1]

Di Diffusion coefficient of i-th 
component in Equation 24

[cm2s 1]

f (x) Multivariate function to 
be approximated from its 
sample values

 F(x) RbF approximation to f (x)

f(GOR) Empirically determined  
function of gas-oil ratio  
in Equation 16

[dimensionless]

g Term dependent on crude oil 
properties in Equation 24

[cm2s 1]

GOR Gas-oil ratio ft3/STb
kB boltzmann’s constant [cm K2gs 2 ]1  
N Number of samples  

in database
[dimensionless]

NN Nearest-neighbor distance  
in sample space

[dimensionless]

Ns Number of segments in an 
alkane molecule

[dimensionless]

P Pressure of live oil in  
Equation 18

[psi]

r Radial distance [m]

SARA SARA fraction

si Width of Gaussian RbF  
centered at database input

[units of  xj ]

T Temperature [K]
T1 Longitudinal relaxation time [ms]
T2 Transverse relaxation time [ms]
T2 ,L M Logarithmic mean of T2  

distribution
[ms]

xi
n-dimensional input vectors 
in database for i=1,2,…,N

Greek 
Symbols

Description [Units]

α Proportionality constant  
in Equation 21

η Viscosity [cp]
ηi Viscosity of i-th oil in  

database
[cp]

κ Exponent of number of  
segments in Equation 23

[dimensionless]

ν Exponent of chain length  
in Equation 24

[dimensionless]

x xi )( RbF centered at xi [dimensionless]

 Φ Interpolation matrix whose 
elements are RbFs evaluated 
at the database inputs.
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