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Theory of microwave dielectric constant logging using 
the electromagnetic wave propagation method 

R. (Bob) Freedman* and John P. Vogiatzis* 

The composite dielectric constants of earth formations at microwave frequencies are strongly dependent 
on formation water saturations and relatively independent of water salinities. Therefore, microwave frequency 
dielectric constant logging offers an attractive new electromagnetic (EM) method of formation evaluation. The 
EM wave propagation method of dielectric constant logging attempts to deduce the dielectric properties of 
earth formations from phase shift and attenuation measurements of EM fields which have been propagated in 
the formation. A device which utilizes this method of well logging has been proposed by Calvert (1974) and 
Rau (1976) in two recent U.S. patents. We discuss the basic physics underlying the operation of a device of 
this type and describe the plane wave procedure discussed by these authors for relating the phase shift and 
attenuation measurements made by such a device to the formation dielectric properties. This procedure is 
suspect, since it is based on an unrealistic plane wave model which fails to treat the radiation field correctly 
and ignores the presence of a layer of mud cake which separates the antenna pad from the formation. To 
determine the errors likely to be inherent in using this procedure in practice, we consider several simple 
theoretical models of an EM wave propagation tool. Computer experiments performed on these theoretical 
models indicate that the apparent formation traveltimes obtained by using this procedure are scmiquantitatively 
accurate with relative errors less than five percent in most cases. For our theoretical models. correction plots 
or departure curves are demonstrated which enable one to deduce the true formation traveltimes. given the 
apparent values and a knowledge of the dielectric properties and thickness of the mud cake. The problems 
which remain if this new method of logging is to attain its full potential (e.g., the accurate determination of 
formation fluid saturations) are discussed. 

INTRODUCTION 

Recently there has been a great deal of interest in 
determining the dielectric constant of earth formations 
by using downhole logging techniques. This interest 
stems in part from the fact that the dielectric constant 
of water is an order of magnitude greater than that of 
the other constituents of reservoir rocks, namely, that 
of oil, gas, and the rock matrix. In Table 1 we list the 
relative dielectric constants of a number of substances 
commonly found in earth formations. Another factor 
contributing to our interest in dielectric constant 
logging is that laboratory experiments at microwave 
frequencies (Poley et al, 1978) have shown that the 
dielectric constant. E’, of water-saturated rocks is 
relatively independent of water salinity. This latter 
fact is of particular importance because of the in- 

creased interest in the petroleum industry on second- 
ary and tertiary recovery projects. where the forma- 
tion water salinity is often unknown as a result of 
fresh water, COz, orchemical flooding. This situation 
has amplified the need for a salinity-independent 
logging technique capable of differentiating between 
water and oil. Dielectric constant logging at micro- 
wave frequencies offers this capability and has the 
further potential of providing a quantitatively accurate 
value for the formation oil saturation. This latter po- 
tential depends, for its successful realization, on the 
solutions of the following two problems: (1) accurate 
values of the formation dielectric properties must be 
obtainable from downhole logging data; and (2) 
empirical relationships must be found which can 
accurately relate these composite dialectric properties 
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970 Freedman and Vogiatzis 

LIST OF SYMBOLS 

The subscripts i = I, 2 on the symbols listed below are used to denote mud cake properties (I = I) and forma- 
tion (i = 2) properties. 

E(O) = &IO + i&:)(m) = Complex frequency dependent dielectric constant (F/m). 
E\ = Dielectric constant (F/m). 

kj = (Ye + ipi = Complex propagation constant (m-l). 
E(, = (36~)~’ x IO-” F/m = Dielectric constant of free space. 
p,, = 4~ x 10m7 x H/m = Magnetic permeability of free space. 

Ki = &I /E” = Relative dielectric constant. 
tans, = &Y/E: = Loss tangent. 

A4 = Phase shift of the electric field relative to two spatially separated receivers located 
at R, and R, (radians). 

A = Total attenuation of the amplitude of the electric field relative to two spatially 
separated receivers located at R, and R, (dB/m). 

A, = The contribution to A arising from the exponential attenuation of the electric 
field amplitude (dB/m). 

A, = The contribution to A arising from spreading losses or algebraic attenuation of 
the electric field amplitude (dB/m). 

L = Distance separating the centers of the two receiving antennas located at R, and 
R, (m). 

(Y~ = True phase constant of a medium (m-l). 
/3, = True attenuation constant of a medium (m-l). 

A, = 0.273 m = Wavelength of EP’I radiation in a vacuum (m). 
(Y, = The phase constant of the formation as calculated from the phase shift A$ via 

equation (8) (m-l). 
/?,. = The attenuation constant of the formation as calculated from the attenuations 

A and A, via equation (IO) (m-l). 
1 Ill = LY /w = A true formation traveltime of an EM wave of angular frequency o) in a formation 

having phase constant a (nseclm). 

f,,rc = cu,./w = A calculated value of t,, (nsec/m). 

= A true formation traveltime of an EM wave of angular frequency w in a formation 
having a phase constant LY and attenuation constant p (nsec/m). 

= A calculated value of I,, (nsec/m). 

= A calculated value of the relative dielectric constant of a formation. 

L near(farj = Power levels detected by the Schlumberger EPT at the near (far) receiver (dBm). 
E = Electric field intensity (V/m). 
H = Magnetic field intensity [(A turns)/m] 

IIt = Electric hertz vector (V-m). 
P(x) = Electric polarization source density or dipole moment per unit volume 

(Coulomb/m2). 
d = Thickness of mud cake layer (m). 

x,,. = Distance between center of transmitter and center of kth receiver
R, = Locus of points defining location of kth receiver. 

T = Locus of points defining location of transmitter. 
p(_v) = Dipole moment per unit length of transmitter (Coulomb). 
(E,) = Average electric field at the kth receiver (V/m). 

I = 0.075 m = Length of transmitting and receiving antennas (m). 
s(r)) = Dimensionless shape function describing distribution of dipole density along 

the transmitter. 
u, = Conductivity (mhosim). 

L = 0.04 m = Distance separating centers of EPT receivers (m). 
J,(x) = Zrroth-order Bessel function. 
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Microwave Dielectric Constant Logging 971 

to those of the formation constituents. This latter 
problem has. in part, been solved by laboratory ex- 
periments (Poley et al. 1978) on the dielectric prop- 
erties of porous rocks saturated with varying amounts 
of w’ater and oil. We shall concentrate on the former 
problem, that is. how accurately one can determine 
the composite dielectric properties of earth formations 
from phase shift and attenuation measurements made 
by an EM wave propagation logging device. 

Although there have been numerous technical 
papers published by scientists in the U.S.S.R. (for 
example, Antonov and Daev, 1965; Daev, 1967; 
Askel’rod, 1968) and the United States (Meador and 
Cox, 1975) on dielectric induction and other related 
logging methods, there exists only sparse literature on 
the microwave EM w’ave propagation technique. 
schlumberger scientists Calvert (1974) and Rau 
(1976) have acquired two U. S. patents on this method 
of dielectric constant logging and recently reported 
(Calvert et al, 1977) on field tests of Schlumberger’s 
new Electromagnetic Propagation Tool (EPT). The 
EPT, like all other known dielectric constant logging 
devices, does not measure the formation dielectric 
properties directly but, instead, measures certain 
properties (e.g., a phase shift and an attenuation) of 
an electric field which has been propagated through 
the formation. To deduce formation dielectric prop- 
erties from these logging data, one must have a 
theoretical model representative of the logging tool. 
The literature published thus far by Schlumberger 
scientists (e.g., Calvert et al, 1977; Rau, 1976) on 
the EPT discusses a model which assumes that the EM 
field propagated through the formation is a plane 
wave; a procedure, based on this model, is given by 
which the dielectric properties of the formation can 
he determined from the phase shift and attenuation 
measurements obtained from the tool. 

Schlumberger introduces traveltimes. t,,, which 
are used to characterize the microwave dielectric 
properties of the formation. The traveltime is defined 

by 

t.01 = J 
$-+iX%+ l), (I) 

where c = 3 X IOx m/set is the velocity of light in a 
vacuum, .sO = (36rr-i X IO-” F/m is the dielectric 
COnStant of a vacuum, and tan 6 = E”/e’, where 

E’(&“) iS the real (imaginary) part of E, the complex 
permittivity of the composite formation. The travel- 
time in equation (I) [see equations (4) and (1 I a)] is 
simply the inverse phase velocity of a plane EM wave 
propagating in an infinite homogeneous medium, The 

values of the formation traveltimes versus wireline 
depth are recorded on the EPT log. These recorded 
values, which we denote by t,rc, are determined 
from a measured phase shift A$ by the equation 

(2) 

where L = 4.0 cm is the distance between the re- 
ceivers, and v = 1. I GHz is the EPT frequency. 

Simple theoretical arguments given in the next sec- 
tion regarding the EPT show that the traveltimes 
t,,r, calculated from equation (2) are equal to the true 
formation traveltimes defined by equation (1) only 
for the highly idealized situation of plane waves 
propagating between the EPT receivers. This situation 
is not correct for the actual tool under borehole con- 
ditions, because it fails to treat the radiation field 
correctly and neglects altogether the effects of the mud 
cake layer which separates the EPT antenna pad from 
the formation. The question which naturally arises, 
then, is whether or not the traveltimes recorded on 
the EPT log are really representative of the micro- 
wave dielectric properties of the formation. or are 
they, for example, more representative of the mud 
cake. It is, therefore, necessary to determine the 
magnitude of the deviations of the f,,,,. from the true 
formation r,r values. One way to do this is to perform 
computer experiments on theoretical models designed 
to simulate the behavior of the EPT This is the ap- 
proach followed here. The theoretical models we 
consider have the virtue that both the mud cake and 
the radiation field from the transmitter are properly 
treated; however, we do not attempt IO model the slot 
antennas of the EPT. Instead, we take a more modest 
approach and replace the transmitting slot antennas 
of the EPT by a distribution of oscillating electric 
dipoles. Likewise, the slot antenna receivers of the 
EPT are replaced by model receiving antennas which 
detect the phase and amplitude of the electric field at 
their locations. Another simplifying assumption we 
make is to replace the curved cylindrical interface 
separating the EPT antenna pad from the formation 
by a plane interface. Nonetheless, the calculations 
reported here and based on this model should identify 
both the sources and magnitudes of the errors likely 
to he inherent in Schlumberger’s interpretation of the 
EPT data. 

Our computer experiments consist of calculating 
values of tpl, by equation (2) for a wide range of 
formation and mud cake properties. These calculated 
values then are compared directly with the true forma- 
tion t,r values defined by equation (I ). In most cases 
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972 Freedman and Vogiatzis 

considered, the relative deviations of the calculated 
values rpIc from the true values tpl are less than five 
percent. Thus, the uncorrected EPT log values should 
represent values which are semiquantitatively accu- 
rate, We assume that the phase shift and attenua- 
tion measurements can be made with negligible error. 
Furthermore, if more precise values are desired, one 
can prepare departure curves for the EPT. similar to 
the plots in Figure 7, by performing laboratory experi- 
ments with the EPT, analogous to the computer 
experiments described in this paper. 

We employ the mks system of EM units (see 
List of Symbols) and otherwise follow as closely as 
possible the notation of Stratton (1941). This notation 
is familiar to physicists but differs from that com- 
monly used by electrical engineers (as, for example, 
the notation of Von Hippel. 1954; Rau, 1976; Calvert 
et al, 1977). To avoid confusion arising from these 
differences, we have carefully defined all quantities 
appearing in this paper. Nevertheless, we forewarn 
the reader of one particularly flagrant difference in 
these two notations. The symbols cy and fi are used 

here to denote the phase and attenuation constants, 
respectively. of an EM wave. In Schlumberger’s 
notation, cr(/3) is the attenuation (phase) constant. 

THE SCHLUMBERGER ELECTROMAGNETIC 
PROPAGATION TOOL (EF’T) 

Description of the tool 

The EPT consists of two transmitting (T) and two 
receiving (R) antennas arranged in a vertical sym- 
metric configuration T-R-R-T on a brass pad which 
is pressed against the borehale wall. A photograph of 
the EPT antenna pad can be found in the paper by 
Calvert et al (1977), and in Figure 1 we show a 
schematic drawing of the tool in a borehole. The 
antennas are cavity-backed slot antennas which are 
tuned to transmit and receive microwave radiation at 
a frequency of 1.1 GHz. The antenna slots are 7.5 cm 
in length and are transverse to the borehole axis when 
the tool is in operation. The distance from each re- 
ceiver to the nearest transmitter is 8 cm, and the 
receivers are 4 cm apart. During operation of the 
tool, the transmitters are pulsed for IO msec, and the 
phase shift and attenuation, relative to the two re- 
ceivers. of the electric field which has been prop- 
agated through the formation are measured. Due to 
the short transmitter-to-receiver spacings and the 
attenuation of the signal, the depth of investigation 
of the EPT is limited to the “invaded” or “flushed” 
zone of the formation. 

,mud cake layer 

FIG. 1. A schematic diagram of the l<PT tool in a bore- 
hole. 

Mechanisms contributing to the attenuation 
of the signal 

In practice, there is a layer of mud cake between 
the antenna pad and the formation which leads to a 
strong attenuation of the signal from the EPT. The 
Schlumberger field tests of the tool (Calvert et al, 
!977) have shown that it does not have a usable signal 
if the mud cake thickness exceeds 3/8 inch (about 
1 .O cm). We give here a descriptive account of some 
of the physical mechanisms responsible for this 
attenuation, concentrating on the rock formation since 
similar considerations apply to the mud cake. Con- 
sider an earth formation consisting of a porous rock 
matrix whose pores are filled with reservoir fluids 
(i.e., oil, gas, and water) in some unknown propor- 
tions. The macroscopic EM properties of any sample 
of this formation can be described by a scalar complex 
frequency dependent dielectric constant E(O) = 
E’(O) + is”(w) and a magnetic permeability CL. In 
an anisotropic medium, the dielectric constant and the 
magnetic permeability are both second-rank tensors 
denoted by cij and pLij, respectively. We limit con- 
sideration in this report to isotropic formations for 
which eij = S,,& and, similarly. itrr pLlj. If we ex- 
clude from consideration formations which contain 
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Microwave Dielectric Constant Logging 973 

FIG. 2. The effects of frequency on the relative con- 
tribution of E: and 8: to 8” for fresh water and 
sea water (from Poley et al, 1978). The arrow on the 
abscissa denotes the EPT frequency. 

ferromagnetic rocks, then it is an excellent approxi- 
mation to replace p by ~~(4~7 X IO-’ H/m). We 
shall always use this approximation. It is important 
to bear in mind that these are necessarily composite 
quantities whose relationship to the macroscopic 
EM properties of the formation constituents must be 
determined empirically. It is customary to write the 
complex dielectric constant in the form E = E’ (1 + 
i tan a), where tan 8 = E”/E’ is called the joss 
tangent, and to refer to E’ as the dielectric constant. 
We shall follow this practice. The imaginary part 
E” of the complex dielectric constant is introduced 
to describe all loss mechanisms that lead to the 
exponential attenuation of an electromagnetic field 
propagating in the formation. These loss mechanisms 
have a microscopic origin (von Hippel. 1954) and 
can be attributed, in the absence of conduction, to 
the several distinct and independent polarization pro- 
cesses which contribute to the dielectric constant 
E’. Each of these processes is associated with a 
relaxation time 7, which is the time required for the 
polarization associated with that process to approach 
equilibrium when a substance is placed in an external 
dc electric field. The reciprocal (7-l) of this relaxation 
time defines a characteristic frequency. A necessary 
condition that a given process contribute significantly 
to the attenuation of an applied electric field of 
frequency w is that the frequency of the applied field 
satisfy the resonance condition w7 = 1. The EPT 
frequency lies on the low-frequency end of the dipolar 
Debye rcsonance~(see~ FrGhlic~r, i 949), which ocz‘urs 
in water at a frequency of roughly 30 GHz at room 
temperature. In the Debye model, E: has the form 
EL = (const)or/[l + (w)‘], where 7 is the Debye 
relaxation time Note that EL has a maximum for 
07 = I. This resonance contributes a term E): to E”. 
which is associated with the orientation of the per- 
manent electric dipole moments of the asymmetric 
water molecules by the external field. This mechanism 

POROSITY 16) 

. FRESH YRTER 

* 2.0% YT. SRLINITY 

q  4.31 UT. SRLINITY 

o 9. ,I YT. SRLINITY 

+ 15.01 VT. SRLlNlTY > 

IO 

0 
0 5 LO 15 20 251 

POROSITY (‘$1 

FIG. 3. Dependence of E’ and E” on salinity and 
porosity for water saturated sandstcmes at 1 .2 GHz 
(from Poley et al, 1978). 

is a source of attenuation of the EPT signal. In addi- 
tion to the loss mechanisms associated with the 
various polarization processes contributing to E’, 
there is an additional loss mechanism which can arise 
from ionic conduction due to the natural salinity of 
the formation water. These losses contribute a term 
E:: = U/W to En, where v is the formation con- 
ductivity. In the GHz frequency range, the contribu- 
tion of 8: to E” is, for fresh water, small compared to 
that of 6;. However, as the water salinity increases, 
the contribution from E: can dominate, as is shown 
in Figure 2. Experiments (Poley et al. 1978) on the 
dielectric properties at 1.2 GHz of rocks saturated 
with water of various salinities have shown that, 
while E’ is~ fairly insensitive to saiiniry (parricuiariy 
for sandstones), there is a much stronger dependence 
of E” on salinity. These data corroborate our conclu- 
sion that conduction losses can contribute signifi- 
cantly to the attenuation of the EPT signal in for- 
mations containing water of high salinity. This 
conclusion is also consistent with Schlumberger’s 
findings (Calvert et al, 1977) that the received signal 
levels can become too low for reliable interpretation 
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974 Freedman and Vogiatzis 

Table 1. Relative dielectric constants of substances 
commonly found in earth formations. 

Substance Relative dielectric constant 

Limestone” 
Berea sandstonea 

5.5s 
3.45 

Yule marblea 8.06 
Dolomitea 7.92 
Pine prairie salta 5.51 
Waterb 76.7 
Petroleum oil@ I .92-2.22 

(a) Values reported by Tam (1974, Tables 4-6) at 
I’ = 1 .O GH; for dry Locks at room temperature. 

(b) Values reported by van Hipple (1954, p. 365-366) at 
I‘ = 3.0 GHr and T = 25°C. 

in “conductive formations, such as unconsolidated 
shales and high-porosity, high-salinity formations, 
whose resistivity is less than about 2 to 3 n-m”. In 
Figure 3 we show data (Poley et al, 1978) on the 
dependence of a’ and E” on salinity and porosity for 
water-saturated sandstones. In view of the above 
discussion, it should be possible to reduce the losses 
associated with the mud cake by using fresh water- 
based drilling muds. There will, however, remain 
large dipolar losses associated with the high water 
content of the mud cake. 

Our discussion thus far has been concerned with 
loss mechanisms associated with E” which lead to an 
exponential attenuation of the EPT signal. If the 
electric field from the EPT transmitters which is 
detected at the receivers were a plane wave, then 
these would be the only sources of attenuation. For 
the actual tool, however, the electric field from each 
infinitesimal element of the transmitter falls off ac- 
cording to powers of the inverse distance of that ele- 
ment from any arbitrarily chosen observation point. 
The details of this algebraic attenuation of the ampli- 
tude of the field depends not only on the physical 
properties of the transmitting antenna, but also on 
the EM properties of the medium. To distinguish 
these losses from the exponential losses associated 
with E”, we shall refer to them as algebraic losses 
or. sometimes, as spreading losses. 

Schlumberger’s interpretation of the 
EPT measurements 

It is useful here to review the procedure described 
by Schlumberger for relating the phase shift and 
attenuation measurements made by the EPT to the 
EM properties of the formation. Consider a plane 
wave of angular frequency w = 2rrv propagating 
along the x-axis of a coordinate system which is em- 
bedded in a formation which occupies all space. The 

electric field associated with this wclve has the form 

E(x) = Eoeitkx-Wl), (3) 

The complex propagation constant k is given by 

k = a + i/3 = F d/K (1 + i tan a)“‘, (4) 
0 

where A0 = 2rc/o(A0 = 27.3 cm for the EPT) is 
the free-space wavelength, K = E’/E~ is the relative 
dielectric constant measured relative to the free-space 
dielectric constant ~~[(36a)-’ x IO-’ F/m)], and 
c is the velocity of light in a v’acuum. The EM 
properties of the formation, at frequency w, are then 
described by K and the loss tangent, tan 6, or alterna- 
tively, by the real and imaginary parts of the complex 
propagation constant k, since 

K= 
G 

- (a’ - p’), 
(2,rrY 

(3 

and 

2@3 tan 6 = ~ 
a2 - P’ 

(6) 

The EM propagation method of dielectric constant 
logging attempts to determine Q and p of the forma- 
tion [and. therefore, K by equation (5)] from mea- 
surements of the phase shift A+ (in radians) and 
the attenuation A (in dB/m) of the electric field rela- 
tive to two spatially separated receivers. Consider 
two point receivers located at R, = (x,, 0,O) and 
R, = (x2, 0,O) which make measurements of the 
amplitude and phase of the complex electric field in 
equation (3). The phase shift A$ of the complex 
electric field relative to these two rcccivers is given by 

EC.1,) A$=-Imln- 
E(x,) ’ 

(7) 

where we note that equation (7) is a correct expression 
for the phase shift of any complex electric field 
relative to these two point receivers and is not re- 
stricted to plane-wave fields. From the measured 
value of A+. Schlumberger determines a calculated 
value (Y, of the phase constant of the formation by 
employing the equation 

A+ 1 
%=-=-- Im In E(xl) 

L L EC4 ’ 
(8) 

where L = x2 - x, (in m) is the distance separating 
the receivers. For the hypothetical situation of a plane 
wave propagating in an unbounded formation, equa- 
tion (8) is exact. That is, the calculated value cx, is 
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equal to the true value BL of the formation, as can be 

975 

A, = 65 dB/m, we find that 6,, = 24.8 cm (9.76 
inch) and, for A = 500 dB/m. &rr = 2.00 cm 
(0.7X7 inch) for A, = 65 dB/m. These estimates 
confirm our expectation that the EPT samples only 
the flushed zone within a few inches of the well bore. 

seen easily by substituting equation (3) into equation 
(8). The attenuation A (in dB/m) relative to the two 
point receivers is given by 

A = 8.686 
Re In E(x1) 

L Eh) ’ 
(9) 

where. like the previous expression for A$, this equa- 
tion is general and is not restricted to plane-wave 
fields. Schlumberger determines, from the measured 
value A of the attenuation, a calculated value pr of 
the attenuation constant of the formation by employ- 
ing the equation 

PC = 
A-A,_ 1 

-=LRein 8.686 

where A, is the attenuation in dB/m arising from 
spreading losses. This equation is obtained by noting 
that the total attenuation A can be written as the sum 
of an exponential attenuation A,. and an attenuation 
A, due to spreading losses. The attenuation constant 
/3< is then defined by 

A, = 8.686 &., (11) 

and equation (IO) follows immediately from equation 

(9). 
In general, the spreading losses are dependent on 

the properties of the medium and, in practice, are 
difficult to determine. A procedure which we shall 
follow, and which Schlumberger has used in the field 
to determine A,, is to use the value recorded for the 
attenuation when the EPT tool is pulsed in the air 
for which the exponential attenuation is zero (i.e., 
Pair = 0). This method of correcting for spreading 
loss is only approximate since, as we have noted, 
A, is dependent on the EM properties of the medium. 
Our numerical calculations indicate, however, that 
this procedure, for a tool like the EPT, is not 
unreasonable. since the spreading !oss A,V appears :o 
be only weakly dependent on the properties of the 
medium. 

A rough estimate of the depth of investigation, 
of the EPT is given by the inverse of /3,(&r, = 

:iri;, which pl ays the role of an “effective skin 
depth”. To calculate Srft, a value of A,q is needed. 
In field tests of the EPT by Shell, an attenuation of 
65 dB/m was measured when the tool was pulsed 
in the air (E. C. Thomas, private communication). 
Measured values of A recorded on the EPT logs vary 
roughly from 100-500 dB/m, depending on the mud 
cake thickness and the dielectric properties of the 
formation and the mud cake. For A = 100 dB/m and 

As we have noted previously, it is customary to 
use CL,,, K, and tan 6 to describe the EM properties 
of nonmagnetic media. Schlumberger introduces two 
traveltimes t,, and tp,) which are &fined in terms of 
(Y and /3 (and, therefore, may also he used to charac- 
terize the EM properties of a medium) by the 
equations 

and 

t,1 = a/w, (lla) 

We note that the terminology “traveltimes” is some- 
what misleading. since these quantities have the 
dimensions of inverse velocities. From their defini- 
tions, we see that these quantities aim not independent 
but are related by 

I 02 
t,r = d t;,, + p 

d 
(12) 

We introduce calculated values (i.e.. observed values) 

(134 

and 

K, = (13c) 

to distinguish these values from the true formation 
values. 

The EPT log 

In Figure 4, a typical EPT log is displayed. Scales 
on different EPT logs may vary; however, the basic 
format is similar to the log in Figure 4. This log 
records values for the following quantities: 
I) A value of rlllc in nanoseconds per meter (nsec/m) 

on a scale of 5-15. 
2) A value for the relative attenuation A of the ampli- 

tude of the electric field between the receivers in 
decibels per meter (dB/m) on a scale from 
O-500. 

3) The power levels L,,,,, and &,, detected at the 
near and far receivers, respectively, which are 
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976 Freedman and Vogiatzis 

expressed in units of dBm (defined below) on a 
scale from - 100 to 0. 
Note that since Schlumberger does not make a dis- 

tinction between calculated and true formation values. 
t,, is shown on the log heading. This value is, how- 
ever, determined from the measured phase shift A+ 
[i.e.. by equation (13a)] and is, therefore, a 
calculated value rather than the true value for the 
formation. 

The reader may be wondering about the usefulness 
of the true t,, of the formation. Schlumberger em- 
ploys an equation which relates the true values of 
t,, to the traveltimes of the constituents by a relation- 
ship of the form 

f,r = 6Sso~ZW + $J(l - Sso)trrJl 
+ (1 - +)tpma. (14a) 

The Schlumberger equation (l4a). if valid for the 
formation, allows one to determine the water satura- 
tion S,, in the flushed zone (and, therefore, the hydro- 
carbon saturation) given the lithology, a value of the 
formation porosity 4. and empirically determined 
values of the traveltimes for water (t,,,.), hydro- 
carbons (tp,,), and the rock matrix (tpm,). If we 
assume that accurate values of these quantities can 

be determined in the laboratory, and that equation 
(14a) is indeed valid, then the determination of 
reliable values of S,,, from the EPT log is limited by 
how much the calculated value t,,, . which is read 
from the log, deviates from the true I,,! of the forma- 
tion. The remaining sections of this paper will be 
aimed at determining the magnitude and origin of 
these deviations. 

Laboratory experiments by Meador and Cox (1975) 
indicate that at frequencies between IO and 40 MHz, 
the dielectric constant E’ of water- and oil-saturated 
rocks is consistent with an equation of the form 

E’ = [f$S,.&I:: + 4(I - S,,.)&hl 
+ (I - @) &;:]“c, (14b) 

where S,,. is the water saturation. and EL., E;), and 
&an are the dielectric constants of water, oil, and 
rock matrix, respectively. In the frequency range of 
these experiments, it was found that the exponent c 
is a nonuniversal quantity which depends on such 
details of the formation matrix composition as grain 
size, shape. and orientation. Theexpcrimentsindicate 
the variation of c with formation type is in the range 
from roughly, zero to two. It is curious to note that if 
we set c = I /2 in equation (14h) (and multiply 
the result by G), we obtain 

Rc. 4. An example of a Schlumberger EPT log (from Calvert et al, 19771 
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Microwave Dielectric Constant Logging 

where t,,,, = d/~~“e’. and tl),,S = a in which 
the subscript x denotes any one of the constituents 
oil. water, or the rock matrix. Note that this equation 
is essentially the same as equation (14a) used by 
Schlumberger, since in practice the difference be- 
tween f,,, and t,,,, is small (i.e.. the /3*/o’ correction 
in equation (I 2) is small relative to ri,,). In light of 
the above remarks, it should be clear that if both 
equations (14a) and (l4b) are correct in their re- 
spective frequency ranges, then a clear advantage 
derives from working at microwave frequencies in 
dielectric constant logging, since the exponent c is 
universal (i.e., independent of detailed formation 
matrix composition). 

The power levels L,,.,, and Lrar detected at the 
near and far receivers are given in units of dBm, and 
are defined by 

P = 10(dBm-30)110 (in watts), (13 

where P is the power level in watts. Note that zero 
dBm corresponds to a power level of one milliwatt. 
Field tests (Calvert et al, 1977) have shown that if the 
power level Liar at the far receiver drops below 
-50 dBm ( 10mH watts), then the tPl readings become 
erratic, indicating that the signal level has become 
too weak for reliable detection. From the definition 
of the power dissipation in decibels’, we find that 
the attenuation A (dB/m) is given by 

A= 
Lear - Lfar 

L ’ (16) 

which follows from equation (I 5) 

THEORY 

Description of the model 

Our model. a schematic view of which is shown in 
Figure 5, consists of a perfectly conducting half-space 
z50, which is separated from the formation 
(medium 2) by a layer of mud cake (medium 1) of 
uniform thickness d. The EM properties of the mud 
cake are described by its magnetic permeability pO, 
relative dielectric constant K,, and loss tangent 
tan a,, while the formation properties (i.e., those of 
the invaded zone) are described by p,,, K2 and tan &. 
On the interface between the mud cake and the per- 
fectly conducting half-space, there is located a trans- 

‘The pow’er dissipation in decibels (dB) is by definition 
dB = IO log [P(x1)/P(x2).] 

FIG. 5. A schematic view of the theoretical model. 

mitting antenna T and two receiving antennas RI and 
Re. The first case we consider is a transmitter which 
is an oscillating electric point dipole p = pe-‘O’ ^z 
located at the origin and two point receivers located 
on the x-axis at R, = (.T~, 0,O) and R, = (x2, 0, 0). 
Note that the direction of the electric dipole source 
is normal to the boundary of the perfectly conducting 
half-space. This choice is dictated by the model, 
since one can show by image method arguments that 
an electric dipole whose moment is in the x - y plane 
will produce a vanishing electric field everywhere. 
Using this model, we calculate the electric field 
detected by each of the two receivers. Since the re- 
ceivers are located at z = 0, the electric field detected 
at R, and Rz has only a z-component. This follows 
from the boundary condition that the tangential com- 
ponent of the electric field must vanish on the surface 
of a perfect conductor. The phase shift A+ and 
attenuation A of the electric field relative to the re- 
ceivers can be obtained from equations (7) and (9). 
The phase shift and attenuation thus determined are, 
of course, calculated for specific and, therefore, 
known values of the model parameters. d, K,, tan 6,, 
K2, and tan 6,. For each set of these parameters, we 
use the corresponding phase shift and attenuation to 
infer calculated values of formation parameters from 
equations (8), (IO), (I 3a), and (I 3b). These calculated 
values then can be compared directly with the true 
formation parameters. The second level of calcula- 
tions in this section involves replacing the point 
dipole transmitter by a finite antenna consisting of a 
weighted distribution of point dipoles oscillating in 
phase. The electric field transmitted by this antenna 
is obtained from the previous solution for the point 
dipoles by applying the principle of linear super- 
position. This method of treating a linite transmitter 
is straightforward and can be extended easily to a 

D
ow

nl
oa

de
d 

06
/2

5/
15

 to
 1

63
.1

88
.8

9.
18

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



979 Freedman and Vogiatzis 

more general source, such as one consisting of a pre- 
scribed distribution of both electric and magnetic 
dipoles. If we replace the point receivers by finite 
receivers, a problem arises whenever we attempt to 
use equations (7) and (9), because both the phase 
and amplitude of the complex electric field are 
position-dependent and, therefore, vary over the 
length of the receiving antennas. This problem, of 
course, does not exist for point receivers and is also 
absent for a plane wave propagating between finite 
receivers because both the phase and amplitude of a 
plane wave vary only along the direction of its 
propagation. We can solve this problem and still use 
equations (7) and (9) to define the relative phase 
shift and attenuation of the complex electric field 
between two finite model receivers, provided that 
the receivers measure the average electric field at 
their locations. That is, the electric field averaged 
over the length of each receiver. These ideas will be 
expressed in a mathematical language in the following 
subsection. 

Solution of the theoretical model 

The electric hertz vector.--It is convenient to 
introduce the electric Hertz vector n- (see, for exam- 
ple, Stratton, 1941), defined such that the EM field 
intensities E and H in a source-free region of space 
are given by 

and 

E=VxVxII, (17) 

HZ k2 -vxn. 
iwPu0 

(18) 

The source of the vector n and the EM field derived 
from it is the electric polarization P(x), or dipole 
moment per unit volume. We use P(x) to denote that 
part of the electric polarization arising from dipole 
oscillators activated by external power sources. There 
is also a contribution to the electric polarization in a 
dielectric which is induced by the external field E. 
This induced polarization is absorbed into the com- 
plex dielectric constant E of the medium. The Hertz 
vector obeys the inhomogeneous wave equation 

V2n + k2n = - p(x), 
E’ 

(19) 

where the complex propagation constant k is defined 
in terms of E = E’ + is” by the equation k = o*. 
The explicit time dependence has been removed from 
the above equations by requiring that all quantities 
vary in time with the factor e-iW’. For an oscillating 

point dipole p = pemiw’ i located at the origin, the 
equations to be solved, in cylindrical coordinates 

(r, 0, z), are 

a2rI1 , 1 an, + a2n1 

CJr2 r dr a? 

+ k2n =-p S(r)S(~) 
1 I 

E; 27rr ’ 
(20) 

for 0 % z 5 d, and 

a2r12 + 1 an2 I  a2n* 
dr2 

+ kin2 = 0, (21) 
r dr dZ2 

valid for d 5 z 5 m. In writing the above equations. 
we have noted that there is no dependence on the 
angle 13, because the problem has rotational symmetry 
about the z-axis and, also. that the Hertz vector is in 
the direction of its source, i.e., 11, = (O,O, ni) for 
i = 1 and 2. The boundary conditions satisfied by the 
hertz vectors ni can be obtained easily from equa- 
tions (17) and (18) and the boundary conditions on 
the EM field vectors. We find that 

an,=,atz=O (22) 
a z 

which follows from the requirement that the tangen- 
tial component of the electric field, El,, vanish 
for z = 0. This boundary condition results from the 
fact that the half-space z % 0 is a perfect conductor. 
At the interface z = d, the continuity of the tangen- 
tial components H,, = Hz0 and E,,. = E$,. lead to 
the conditions 

and 

kiIIl =kiI12. at z = d, (23) 

arII, an, -=_ 
az az 

, at z = d. (24) 

The solution of the boundary value problem de- 
fined by equations (20) and (21) and the conditions 
of equations (22)-(24) is given in Appendix A. We 
find that the only nonvanishing component of the 
electric field at the receivers is the z-component, 
which is given by equation (A-21). The electric 
fields at the point receivers located at Rl are given by 
evaluating equation (A-21) at r = x, for 1 = I, 2. In 
Table 2 we present some typical results based on 
numerical evaluations of equation (A-21) for repre- 
sentative values (Rau, private communication) of the 
EM properties of the formation and mud cake. Com- 
puter calculations were performed for values of 
formation parameters K2 and tan 6, listed in Table 2 
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Microwave Dielectric Constant Logging 979 

and for mud cake parameters K, = 25, 35, 40; 3) For any fixed set of formation and mud cake 

tan SI = 1.0, 3.0, 5.0; d = 1.0, 0.5, 0.3, and 0.0 EM properties, the attenuation A is a monotoni- 

cm. From the phase shift and attenuation of the field cally increasing function of the mud cake thick- 

relative to the two receivers we calculated, as de- ness, Values of attenuation in excess of 450 

scribed in the previous section, the EM properties dB/m exist for several cases with d = I .O cm. 

of the formation and compared these values with This result is consistent with Schlumberger’s 

the true values. These calculations are valid for field tests of the EPT, which revealed that 

X, = 8 cm, x1 = 12 cm, and v = 1.1 GHz. which measured attenuations could approach 500 

corresponds to values appropriate to the Schlumberger dB/m for a mud cake thickness of 3/8 inch 

EPT. In obtaining these results we have used a value (1.0 cm). 
A,s = 75.87 dB/m [see equations (IO), (13a), and 
(13b)] for the spreading loss which, as discussed in 

the previous section, is obtained by calculating the 
4) We note that, in some cases, the relative 

attenuation A in air (i.e., for K = I .O, tan 6 = 0.0 
attenuation A, which is proportional to the 

and d = 0.0). 
logarithm of the ratio of the electric field ampli- 

We summarize the main results of these computer 
tudes at the two receivers. decreases with in- 

experiments which are valid for a point transmitter 
creasing tan 6,) when all other model param- 

and receivers by noting the following features: 
eters are held constant. In order to satisfy our 
intuitive expectation that the field amplitudes at 

I) In the absence of a layer of mud cake and for the receivers should decrease with increasing 

the range of formation parameters considered, tan 6,, we have calculated these amplitudes. 

the relative errors in t,l, varied from 0.7 to 4.3 We find, as expected, that the field amplitudes 

percent. Moreover, for d = 0, the calculated (and, therefore, the power levels at each re- 
values t,,rr are always less than the true values ceiver) decrease with increasing tan 6,) for fixed 

t,r. values of K2, tan a,, K,, and d. 

2) For the three finite mud cake thicknesses (i.e., 
d = I .O, 0.5, and 0.3 cm) for which we obtained 5) The phase shifts, for the range of parameters 
numerical results and for the range of mud cake considered in this work, varied from 100-300 
and formation parameters considered, the degrees. For fixed values of the mud cake 
relative errors in tDlc varied from 0. I to 13.9 parameters, the phase shifts increase rather 
percent. Moreover, in almost all cases con- rapidly with increasing values of K2 and in- 
sidered. tnrc is greater than tpl. crease slowly with increasing values of tan &. 

Table 2. Typical numerical results for point transmitter and receivers model.* 

K* tan ijz A& (degrees) A (dB/m) t,,(nseclm) b,(nsec/m) r,,(nsec/m) tPoe(nsec/m) 

5.0 IO 
:10 

133.0 159.9 1.46 
10.0 189.7 177.1 IO.55 
15.0 .I0 227.6 189.1 12.93 
20.0 .I0 257.3 200.0 14.93 
25.0 IO 282.8 210.9 16.69 

5.0 :30 134.3 215.7 7.54 
10.0 .30 191.4 243.1 10.66 
15.0 .30 229. I 262. I 13.05 
20.0 .30 258.3 280.5 15.07 
25.0 .30 283.2 300.9 16.85 

5.0 .40 135.6 242.1 7.6 
10.0 .40 193.1 274.6 IO.74 
15.0 .40 230.8 296.1 13.16 
20.0 .50 259.6 318.7 15.19 
25.0 .40 283.9 343.8 16.98 

5.0 .60 139.6 293.6 7.16 
10.0 .60 197.9 333. I 10.97 
15.0 .60 235.3 360.7 13.44 
20.0 .60 263.2 389. I 15.51 
25.0 .60 285.7 422.7 17.35 

*Mud cake parameters: K, = 25.0, tana, = I .OO. and d = I .O cm. 

8.40 7.45 
1 I .98 10.54 
14.37 12.91 
16.24 14.91 
17.85 16.67 
8.48 7.45 

12.08 10.54 
14.47 12.91 
16.31 14.91 
17.8X 16.67 
8.56 7.45 

12.19 IO.54 
14.57 12.91 
16.39 14.91 
17.92 16.67 
8.81 7.45 

12.50 10.54 
14.86 12.91 
16.62 14.91 
18.04 16.67 

8.28 
Il.86 
14.25 
16.1 I 
17.71 
8.15 

II.76 
14.13 
15.95 
17.48 
8.10 

Il.73 
14. IO 
15.88 
17.36 
8.03 

Il.74 
13.08 
15.78 
17.09 
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980 Freedman and Vogiatzis 

Finite transmitter and receivers enables us to write the average electric field (Ek) at 

In this subsection we consider a model transmitter the receiver denoted by the points Rk in the form 

consisting of an electric dipole density p(y) = 

P(y)e-‘“’ z^ distributed along a line defined by the 
locus of all points T, where 

T = (0, y, 0) for - ; I y 5 f , (25) 
.f[dx% + (.v - YPl, (28) 

which follows from the principle of linear super- 

and 1 is the length of the transmitter. We denote the position. The function f’(r) can be obtained by in- 

integrated strength of the transmitter by p, that is, spection from equation (A-21) and is given by 

I 
112 

dYP(Y) = P. 
-112 

(26) f‘(r) = c m dAF(A,r) +G . 

We limit consideration to symmetric source densities 
for which p(y) = p( -y), and, in addition, we con- 

*[I - iklr - (kIr)Z1]. 

sider two finite model receivers which detect the where we have defined, 

F(X, r) = 
2h3Jo(Ar)eiYld(ylk% - y2kf) 

rl[yzkT(e Old + e-iyld) _ ylk;(eiYld _ ,-iYld)] ’ 

(29) 

(30) 

average complex electric field (defined below) at their 
locations. The locations of the two receivers are de- 
fined by the locus of points RI, for k = I and 2 where 

Rk= (x,,.,,V,O), for -f~jsf. (27) 
L L 

This arrangement is shown schematically in Figure 
6. Our objective is to calculate the average electric 
field produced by the transmitter at each of the re- 
ceivers. To accomplish this, we note that any element 
of the transmitter corresponds to a point electric 
dipole of strength p(y) dy which produces an electric 
field at any point in the plane z = 0, which is given 
by equation (A-21) where r denotes the distance 
separating the points in question. This observation 

!?A 

T 

-en f 

X 

FIG. 6. A schematic view of the finite transmitter and 
receivers model. 

with 

yl= im, (314 

C=i. 
47Ts: 

(31b) 

Note that the argument of the function f(r) which 
appears in the integrand of equation (28) is the dis- 
tance between an element y of a receiver and an 
element y of the transmitter. The double integral in 
equation (28) can be interpreted as follows. For fixed 
y. the integral over j gives the average electric field 
at a receiver produced by a point dipole of strength 
p(y) dy on the transmitter. The integral over y then 
givjes the total average held (Ek) at a receiver. This 
field, of course, depends through the function f(r) on 
the model parameters I, K, , tan S 1, K, , tan S, , and d. 

In the absence of a mud cake layer, d = 0, and (&) is 
given by equation (28) with the function f(r) re- 
placed by a single term, i.e., the second term on the 
right-hand side of equation (29). In order to perform 
any calculations, we must further specify our model 
by choosing a form for the density i’(y) appearing in 
equation (28). We consider and present numerical 
results for two source density distributions. These 
are a cosine distribution 

p(y) =$ co,?, for -f 5y5- i , (324 

nd a rectangular distribution 
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Microwave Dielectric Constant Logging 981 

Table 3. Typical numerical results for finite transmitter and receivers model: cosine distribution of transmitter 
dipole density.* 

K2 tans, Ac$ (degrees) A (dB/m) t,,(nsec/m) t&nseclm) t,,,(nsec/m) t,,,,(nsec/m) 

5.0 IO 
10.0 .‘I0 

129.6 146.8 1.46 8.18 1.45 8.08 
184.8 160.6 IO..55 II.67 IO.51 Il.57 

15.0 .I0 222. I 169.5 12.93 14.02 12.91 13.93 
20.0 10 

:10 
251.5 177.6 14.93 15.87 13.91 15.77 

25.0 276.8 1x.5.7 16.69 17.4x 16.67 17.31 
5.0 .30 130.9 200.x 7.54 X.26 7.45 7.98 

10.0 .30 186.7 225.2 10.66 Il.79 IO.54 I I..51 

15.0 .30 224.0 241.4 13.05 14.14 12.91 13.85 
20.0 .30 253.0 257.3 15.07 15.97 14.91 IS.67 
25.0 .30 277.9 215.3 16.85 17.54 16.67 17.21 
5.0 .40 132.3 226.9 7.60 X.35 7.45 7.94 

10.0 .40 188.5 256.0 IO.74 II.90 IO.54 I I.50 
15.0 .40 225.X 275.5 13.16 14.25 l?.Yl 13.84 

20.0 .40 254.5 29s. I 15.19 16.07 I-I.91 15.63 
25.0 .40 278.X 318.0 16.98 17.60 16.67 17.12 

5.0 .60 136.2 276.4 7.76 X.60 7.45 7.x9 
10.0 .60 193.5 313.4 10.97 12.22 IO.54 Il.53 

15.0 .60 230.6 338.6 13.44 14.56 12.91 13.X6 
20.3 .60 25x. 5~ 364.9 I 5: 5 1 I 6 .3~2 ;3.9; I 5 .57 

25.0 .60 281.1 396.7 17.35 17.75 16.67 16.00 

*Mud cake parameters: K, = 25.0, tan 6, = I .OO. and d = I .O cm. 

Wb) 
1 L L 

Note that both of these densities satisfy equation (26). 
The basic difference between these two distributions 
is that the rectangular distribution gives equal weight 
to all parts of the transmitter, while the cosine distri- 
bution weights the center of the transmitter most 
heavily and gives no weight to the endpoints. To 
facilitate the numerical calculations required by equa- 

tions (28)-(30). we demonstrate, in Appendix B, that 
the double integral in equation (28) can be written 
in a rather simple form for any source density 
p(y) = p(-y) of the type considered here. For the 
cosine and rectangular distributions. these results are 
displayed in equations (B-IO) and (B-l I), re- 
spectively. 

Some typical results of numerical calculations 
based on equations (B-IO) and (B- I I ) are presented 
in Tables 3 and 4, respectively. These calculations 

Table 4. Typical numerical results for finite transmitter and receivers model: rectangular distribution of dipole 
density.* 

K2 tan6, A$ (degrees) A (dB/m) t,,(nseclm) I,,l,(nsec/m) I,,, (nseclm 1 r,,,(nseclm) 

5.0 .I0 129.1 143.2 7.46 8.15 7.45 
10.0 

8.06 
IO 

:I0 
184.4 155.3 10.55 Il.64 IO.54 

15.0 
I I ..55 

221.8 163.0 12.93 14.00 
20.0 

12.91 13.92 
.I0 25 I .4 170.2 14.93 15.87 14.91 

25.0 .I0 
IS.78 

277.0 177.7 16.69 17.49 
5.0 

16.67 
.30 

17.40 
130.5 197.0 7.54 8.24 

10.0 
7.45 

.30 
7.97 

186.4 220.0 10.66 I I .77 
15.0 

IO.54 
.30 

I I.50 
223.9 235.3 13.05 14.13 

20.0 
12.91 

.30 
13.86 

253. I 250.6 15.07 15.98 
25.0 

14.91 
.30 

15.70 
27X.2 268.3 16.85 5.0 17.56 16.67 .40 131.9 17.25 

223.0 7.60 10.0 8.33 .40 7.45 7.93 188.3 
250.9 10.74 II.89 15.0 IO.54 .40 I I.50 225.7 
269.6 13.16 14.25 

20.0 
12.91 

.40 
13.86 

254.7 288.7 15.19 25.0 16.08 14.91 .40 15.66 279.3 
311.4 16.98 5.0 17.63 .60 16.67 135.9 17.17 
272.3 7.76 1U.U 8.58 7.4s I .60 193.3 RR 
308.3 10.97 12.21 15.0 10.54 .60 I I .54 230.7 
332.9 13.44 20.0 14.56 .60 12.91 258.8 13.89 
359.0 15.51 25.0 16.34 .60 14.91 281.6 15.61 
390.9 17.35 17.78 16.67 16.96 

*Mud cake parameters: K, = 25.0, tan 6, = I .OO, and d = I .O cm. 
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c 

. A+ 

/ . A+ 

FIG. 7. Plot of t,,! versus I,,,~ for several typical cases 
of interest. 

are valid for x1 = 8 cm, x2 = 12 cm, u = I. 1 GHz, 
and I = 7.5 cm. The spreading losses used~ in these 
calculations are A, = 71.33 dB/m for the cosine 
density and A, = 70.33 dB/m for the rectangular 
density distribution. These spreading losses were 
calculated according to the prescription described 
previously. 

Note that the results for the cosine and rectangular 
distributions are, for practical considerations, quanti- 
tatively identical. This supports ihe contention ihat 
the detailed shape of the source density is not an 
important factor in determining the behavior of a 
device of the type described here. It is also apparent 
from these results that the finite transmitter and re- 
ceivers behave qualitatively like the point trans- 
mitter and receiver discussed earlier. Therefore, our 
previous qualitative remarks concerning the results 
for the point transmitter and receivers model are also 
applicable here. There are, however, quantitative 
differences between these results. We briefly state 
here some of the important quantitative results of 
our calculations on the finite transmitter and receivers 
models. These are: 

I) In the absence of a layer of mud cake and for the 
range of formation parameters considered, the 
relative errors in tplc varied from 2.4 to 6.7 
percent. 

2) For the three nonzero mud cake thicknesses 
considered and for the ranges of formation and 
mud cake parameters for which we obtained 

numerical results, the relative errors in I,(, varied 
from 0 to 11.4 percent. Note that we did not obtain 
numerical results for 0.0 <d < 0.3 cm, be- 
cause the numerical integrations required to 
evaluate the electric fields in equations (B- 10) and 
(B-l I) consume excessive amounts of computer 
time due to the slow convergence of these ex- 
pressions for small values of d. 

3) Values of the attenuation range roughly from 
100-500 dB/m, with values approaching 500 
dB/m for several cases with d = 1.0 cm. 

4) Values of the phase shifts range roughly from 
100-300 degrees. 

In Figure 7, we show a typical plot of t,t versus 
t,!, from our computer experiments on the finite trans- 
mitter and receivers model having a cosine distribu- 
tion of transmitter dipole density. Similar plots can 
be constructed for other values K, and tan 6, of mud 
cake dielectric properties. The deviations of the 
plotted points from the solid line t,t = tplc illustrate 
how the true formation values r,, deviate from the 
calculated values (i.e., observed values). Note that 
for each value of d we have plotted ten values of tplc 
(and the corresponding values of I,,() which, by in- 
spection of Figure 7, can be grouped into five “near- 
est neighbor pairs.” Each of these five pairs of values 

of t,lC corresponds to a given value of K, (i.e., we 
consider the five values shown in Table 3), and to the 
values tan6, = 0.1 and 0.6. The values of tpl, for 
intermediate values of tan& considered (i.e.. 
tan a2 = 0.3 and 0.4) were not plotted because for 
each value K, they lie approximately on the straight 
line connecting values of t,,lr corresponding to 
tan S2 = 0.1 and 0.6. A smooth curve connecting the 
ten points in Figure 7 could be drawn for each value 
of d and would represent a graphical relationship 
between t,, and t,,, valid over the whole range of 
formation parameters considered. Similar curves 
could be prepared for other values of mud cake 
properties. These curves would then represent 
departure curves valid for our theoretical model and 
could be used to obtain accurate values of t,,, given 
values of t,[, and the thickness and dielectric prop- 
erties of the mud cake. In principle. one can prepare 
similar departure curves for the EPT by performing, 
in test tanks, laboratory experiments with the tool 
analogous to the computer experiments already dis- 
cussed. In practice, the usefulness of these departure 
curves will be limited by our knowledge of the mud 
cake thickness and dielectric properties. 
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Microwave Dielectric Constant Logging 993 

CONCLUSIONS 

We have demonstrated theoretically the feasibility 
of determining accurate values of the microwave 
dielectric properties of earth formations from phase 
shift and attenuation measurements made in a bore- 
hole using the EM wave propagation logging method. 
This method of logging is currently being practiced 
by Schlumberger using their new EPT logging tool. 
The procedure employed by Schlumberger for deter- 
mining the formation dielectric properties of earth 
formations from the phase shift and attenuation mea- 
surements made by the EPT is critically examined 
and shown to lead to apparent rather than true values 
of the formation properties. By detailed study of 
several theoretical model devices, we have exposed 
the origin and magnitudes of the errors likely to be 
inherent in using this procedure in practice. For quali- 
tative purposes, such as distinguishing hydrocarbons 
from water, these errors are acceptable; our computer 
experiments indicate, for example, that the relative 
deviations of the apparent (e.g., log values) from 
the true formation traveltimes should be no worse 
than ten percent with only a few exceptions where 
the deviations are slightly greater. These errors may 
become intolerable, however, if one desires to use 
the log as a quantitative tool as, for example, in the 
determination of the formation oil saturation. 

In this latter case, it may become necessary to 
correct the apparent values of the traveltimes in order 
to obtain true formation traveltimes which can be 
used as input into empirical equations such as equa- 
tion (14a). We have shown, by performing computer 
experiments on the theoretical model devices con- 
sidered here, that it is possible to prepare departure 
curves (e.g., see Figure 7) which enable one to obtain 
true formation traveltimes from the apparent values, 
given a knowledge of the dielectric properties and 
thickness of the mud cake. As we have noted pre- 
viously, it is possible to prepare sipilar departure 
curves for the EPT by conducting experiments, in 
test tanks, similar to the computer experiments 
discussed. 

Thus far, we have determined that the EM wave 
propagation method of dielectric constant logging 
offers a sensible means of determining the micro- 
wave dielectric properties of the invaded zone of a 
formation. There remains, however, an outstanding 
problem which must be confronted and solved if this 

new method of formation evaluation is to attain its 
full potential. If this method is to be used for the 

accurate determination of fluid saturations in the 

invaded zone, then valid empirical relationships must 
be found which relate the microwave dielectric prop- 
erties of composite formations to the dielectric prop- 
erties of the constituents (e.g., hydrocarbons, water, 
and the rock matrix). At the present time we do not 
know the validity of equation (14a) and, therefore, 
oil or water saturations calculated from this equation 
are subject to unknown errors. There is clearly a 
need for exhaustive laboratory studies on the micro- 
wave properties of porous reservoir rocks saturated 
with varying amounts of water and oil. 
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994 Freedman and Vogiatzis 

APPENDIX A 
SOLUTION OF THE BOUNDARY VALUE PROBLEM 

In order to solve the boundary value problem de- 
fined by equations (20) and (21) and the conditions 
(X)-(24), it is useful to define the zeroth-order 
Hankel transforms (see chapter 5 in Sneddon, 1972) 
n, of the functions ni, 

n&z) = [ drrIIi(r,z)JO(Xr), (A-l) 

and their inverses 

ni(r,z) = 1 dh A fiI,(A, z)JO(Ar). (A-2) 

On applying the transform of equation (A-l) to 
equations (20) and (21) and also to the boundary 
conditions in equations (22)-(24), we find that these 
equations are replaced by 

equation which, along with its derivatives, vanishes 
at infinity. The inhomogeneous equation is easily 
solved by introducing the Fourier transform l?z of 

n,, 

rI,*(A, S) = /m dz e-iSZl?I(A,z), (A-IO) 
--m 

and its inverse 

By applying both of the above transforms to equation 
(A-3), we find that 

ii, =&, 
1 

d2fil - -pS(z) 
- + y;rI1= ~ 

dz2 27rE; ’ 
(A-3) 

e is2 

(s-yd(s+y,7 
(A- 12) 

for 0 5 z 5 d, by which can easily be evaluated by contour integration 

d2fi2 
-+&12=0, 

in the complex s-plane. We find that 

dz2 
(A-4) fi, _ ip eiy+l 

(A-13) 

for d 5 z 5 @J; and the boundary conditions are 4nE; Yl 

an, 
is valid for all z, provided that Im y1 > 0. It is easy 

- = 0, at z = 0, 
dZ 

(A-5) to demonstrate by direct substitution that equation 
(A- 13) satisfies the inhomogeneous differential equa- 

k:fi, = kzfi,, at z = d, (A-6) tion (A-3). The next step is to determine fi,, , which 

and 
satisfies the homogeneous equation and has the gen- 
era1 solution 

aI=II, afi - =2, at z = d. (A-7) 
a~ az 

where we have introduced the complex quantities 

y1 = iVF?f (A-8) 

for 1 = 1 and 2. It is not difficult to show that the 
yL lie in either the first or third quadrants of the com- 
plex plane. We shall always choose that solution of 
equation (A-S) for which Im yc 2 0. 

The solution of the above equations is straight- 
forward. We first concentrate on equation (A-3) and 
note that the most general solution of this equation 
has the form 

fil,,(z, A) = A eiyl’ + B e-lylz, (A-14) 

where the constants A and B will he chosen to satisfy 
the boundary conditions. If we combine equations 
(A-13) and (A-14), we find from the boundary con- 
dition in equation (A-5) that A = B. Therefore, 

fiI =A(e’YIZ + e--iYI”) 

+ ip eiYlltl 

47T&;y1 
(A-15) 

We now consider the homogeneous equation (A-4) 
whose solution has the form 

I=I1= I-l,, + n,, (A-9) n, = C eiYzz, (A-16) 

where II ,h is a solution of the homogeneous equation where C is a constant to be determined, Im y2 2 0; 
chosen such that the boundary conditions are satisfied, we have excluded a term of the form e@z’ because 
and fiP is a particular solution of the inhomogeneous of the condition that fi, --, 0 for z j a. The con- 
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stants A and C can be determined by the boundary 

conditions at the interface z = d. From equation 

985 

integral was generated by applying the differential 

operator in equation (A-20) to J,(hr) and making 

use of Bessel’s equation. The second term was ob- 

tained by explicitly evaluating the integral in equa- 

tion (A-19) by using the Bateman table of integral 

transforms (see formula 23 in Erdelyi, 1953) and 

then applying equation (A-20). This term. which is 

independent of the mud cake thickness d, can be 

identified with that contribution to the total held aris- 

ing from radiation that propagates only in the mud 

cake. The integral, on the other hand. represents the 

contribution to the total field which. roughly. is a 

result of reflections and refractions of the EM held 

from the formation-mud cake interface at z = d. Note 

that this contribution depends in a rather complicated 

way on the EM properties of both of these media and 

also on the mud cake thickness d. Thl\ latter depen- 

dence is rather crucial, since it is not difficult to show 

that the integral is divergent for d = 0. For finite d, 
however. this large A divergence is cut off by the 

(A-6) we find, 

Ak;(efYld + e-iYld) + k: R eiYld 

= k; c eiyqd. 

from (A-7) we have 

iYIA(eiYld - @‘Id) + ;y,ReiYld 

(A-17) 

= iy,C elYzd, (A- 18) 

where we have defined the quantity 

R=rp. 

4n-n;Yl 

The above equations are easily solved for the con- 

stant A which, when substituted into equations 

(A-2) and (A-1.5), gives 

n,(r, z) = R’ 
I 

x dhhJ,,(hr)e’Yld(ylk~ - y2k:)(eiY1’ + emiyl*) 

o yl[y&(e 
iYld + ,-iYld) _ ylk/Z(e’Yld _ e-iYld)] 

+ R’ c 
Oc dh AJo(Ar)e’YIZ 

Jo Yl 

where R’ = -y,R. Note that there is no need to cal- 

culate the constant C since our objective is to calculate 

the electric field at the receivers which can be ob- 

tained from n 1, The only nonvanishing component 

of the electric held at the receivers is the z-component 

(A-20) 
z=o 

If we use the above equations, we find, after some 

algebra. that 

(A- 19) 

exponential factor P’? 1” which behaves asymptoti- 

cally like e- hd Although the limit d + 0 is rather 

subtle in equation (A-21), one can, nevertheless, 

determine from this equation the electric field for the 

case of a single medium (i.e., in the absence of a 

layer of mud cake). The correct result is obtained by 

setting k, = k2 for which the integral v>anishes and 

the electric field is given by the second term with 

the propagation constant k, interpreted as that of the 

formation. One can check the validity of these state- 

E(r) = 2R’ 
dh A3Jo(Ar)eiYld(ylk~ - y2kf) 

yl[ynkT(e’Yld + e-iYld) - ylk~(eiYld - epiYld)] 

+ y [I - ik,r - (k,r)‘], (A-21) 

valid for z = 0 and Im y, 2 0 with 1 = I and 2. The ments by solving the boundary value problem ex- 

additional factor of A2 in the integrand of the above plicitly for the case of a single medium. 

APPENDIX B 

SIMPLIFICATION OF THE INTEGRAL IN EQUATION (28) 

We demonstrate that the double integral in cqua- lenient for numerical calculations. First. we introduce 

tion (28) can be transformed into a form more con- a dimensionless shape function R(T) = g-x) defined D
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986 Freedman and Vogiatzis . 

u 

u+v = 

-_u +v 

v--u= -1 

= 1 

FIG. B- 1. Area of integration covered by the double 
integral in equation (B-4). 

such that 

y(v)=~g(g),for-acerb. (B-l) 

If we substitute equation (B-l) into equation (28) 
and introduce the dimensionless variable n = u/l 
and Yj = y/I, we find that 

dGyf[W. (B-2) 

It is convenient to introduce new variables of integra- 
tion defined by 

u=r)-r)andr=r)+q, (B-3a) 

or, alternatively, by 

u+v 
y=-- 

v-l.4 

2 
and 7 = - 

2 
(B-3b) 

Making this change of variables, we can write equa- 
tion (B-2) in the form 

“!? f[dx; + (Iu)~], (B-4) 

where the Jacobian determinant of the transformation 
is given by 

w=h 7) -= 
a (4 19 

1 =-- 
2’ 

(B-5) 

and the area of integration .L is shown inFigure B-L 
In terms of the new variables of integration, the 
above integral becomes 

(B-6) 

which can be written in a simple form after making 
some elementary changes of variables and rearrange- 
ments. We find that 

(E/c) = P 1’ duf[V’xi + UuYl Q(u), (B-7) 
0 

where we have introduced the function 

Note that equations (B-7) and (B-X) are general and 
apply to any dipole density shape function for which 
g(v) = g(-_r7). The usefulness of these equations is 
clear, since if the integration in equation (B-8) can 
be performed analytically, then we have reduced the 
double integral of equation (28) to a single integral. 
For the cosine and rectangular distributions in equa- 
tions (32a) and (32b), respectively. the shape func- 
tions are 

g(q) = t cosrrq, for -+ s-_rl 5; (B-9a) 

and 

(B-9b) 

In each of these cases, the integration in equation 
(B-8) is elementary, and we find that the average 
electric held at the receivers is given by 

(E/J =$I’ duf[dxqGjq(l + cos%-u), 
0 

(B- 10) 

for the cosine distribution, and 

(Eh) = p 1’ duf’[m](l - u),(B-I I) 
0 

for the rectangular distribution. 
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