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Summary

Methods for predicting mineralogy from logging-tool measure-
ments have been an active area of research for several decades.
In spite of these efforts, methods for predicting quantitative min-
eralogy including clay types from well-logging data were not
fully achieved. The introduction of geochemical logging tools in
the 1980s offered promise; however, early versions of geochemi-
cal logging tools did not measure elemental chemistry with
enough accuracy and precision to enable reliable and quantita-
tive determination of mineralogy. Recent advances in geochemi-
cal-logging-tool technology now enable accurate and robust
measurements of the chemical elemental concentrations that are
needed to determine continuous quantitative and detailed logs
of mineralogy.

This paper presents a novel approach for determining more
accurate and more detailed mineralogy from an elemental spec-
troscopy logging tool. This work was made possible by three
recent developments: the introduction of a new neutron-induced
gamma ray spectroscopy logging tool, a new research database
consisting of chemistry and mineralogy measured on cores
acquired worldwide from conventional and unconventional reser-
voirs, and a new model-independent inversion method that over-
comes the limitations of previous model-dependent methods.

The model-independent inversion makes use of the database
that includes clean sands, shaly sands, shales, carbonates, and
complex mixed lithologies. The database contains laboratory
measurements of dry-weight elemental chemistry and mineralogy
measured by transmission Fourier-transform infrared (FTIR)
spectroscopy. The database is used to derive a model-independ-
ent mapping function that accurately represents the complex
functional relationship between the elemental concentrations and
the mineral concentrations. After the mapping function is deter-
mined from the database, one can use it to predict quantitative
mineralogy from elemental concentrations derived from the log-
ging-tool measurements. Unlike previous inversion methods, the
model-independent mapping function does not have any adjusta-
ble parameters or require any user inputs such as mineral proper-
ties or endpoints.

The mapping function is used to predict continuous logs of
matrix densities plus concentrations of 14 minerals (i.e., illite,
smectite, kaolinite, chlorite, quartz, calcite, dolomite, ankerite,
plagioclase, orthoclase, mica, pyrite, siderite, and anhydrite) from
eight dry-weight elemental concentrations derived from the log-
ging tool. The new method was applied to well-log data acquired
worldwide in numerous conventional and unconventional reser-
voirs with a wide variety of complex mineralogies. The predicted
mineralogies and matrix densities are generally found to be con-
sistent with core-derived mineralogies and matrix densities.
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Introduction

The early attempts in the late 1970s and the 1980s at predicting
mineralogy from well-logging data preceded geochemical logging
and mostly relied on nuclear tool measurements such as spectral
natural gamma ray (Th, U, K), neutron, density, sonic, and photo-
electric absorption logs. The interpretation of these measurements
provided agreeable results in some environments and could quan-
tify major lithological units such as shales, sands, and carbonates.
However, these measurements did not have sufficient sensitivity
to allow for the determination of complex mineralogy. Modern
neutron-induced gamma ray spectroscopy or geochemical logging
tools evolved from the carbon/oxygen (C/O) tools that were intro-
duced in the 1970s to provide salinity-independent estimates of
oil saturations (Culver et al. 1974). An important paper by Hert-
zog (1980) discussed an experimental inelastic scattering-and-
capture neutron-induced gamma ray logging tool for measuring
C/O as well as Si, Ca, and Fe yields to be used for lithology delin-
eation. This paper signaled the birth of modern geochemical log-
ging. Since 1980, geochemical-logging-tool technology has
passed through multiple phases of development with continuing
improvements in technology including improved neutron sources,
electronics, and scintillation detectors (Pemper et al. 2006; Gal-
ford et al. 2009; Radtke et al. 2012). These technological advan-
ces resulted in more measured elemental concentrations with
improved precisions and accuracies, thus providing an opportu-
nity for more quantitative and more detailed mineralogy analysis.
This paper presents a model-independent inversion method devel-
oped to take full advantage of a new quality-controlled worldwide
chemistry-and-mineralogy research-core database and the more-
accurate and -robust elemental concentrations measured by a new
geochemical logging tool (Radtke et al. 2012).

Importance of Mineralogy. Detailed and accurate knowledge of
mineralogy is essential for understanding the complexity of con-
ventional and unconventional reservoirs. It provides vital informa-
tion needed for the evaluation, completion, and production of
hydrocarbons. The following examples illustrate the importance
of knowing detailed and quantitative mineralogy.

It is well-known that logging-tool measurements are strongly
affected by the different lithologies and minerals present in the
rocks. For example, clay minerals such as smectite have a large
cation-exchange capacity, which provides an additional conduc-
tivity mechanism in clastic reservoir rocks. The clay conductance
becomes a significant effect in the presence of low- salinity for-
mation waters (Waxman and Smits 1968). The excess conductiv-
ity arising from the clays reduces the log-measured resistivities,
which can result in underestimation of hydrocarbon saturations.
Moreover, the equations and models used to derive key formation
properties from tool responses require knowledge of rock-matrix
properties, such as matrix densities, hydrogen indices, neutron-
absorption cross sections, sonic-wave velocities, and dielectric
constants, which can be more accurately determined when the
mineralogy is known.

Detailed knowledge of mineralogy is also needed for optimiz-
ing completions to achieve maximum well production. Knowing



the concentrations of clays and other minerals present in a petro-
leum-bearing formation is vital for determining the completion
and stimulation fluids that one should use to optimize production
rates and to avoid near-wellbore formation damage. For example,
it is well-known that acidizing formations that contain chlorite
causes precipitation of iron, which plugs pore throats and greatly
reduces the permeability in the vicinity of the wellbore. Similarly,
during well completions, one should avoid the injection of low-sa-
linity water into formations containing smectite because smectite
absorbs water and swells to a larger volume, thereby reducing the
permeability. Accurate knowledge of the clay types and their con-
centrations is needed to prevent the problem of fines migration.
For example, if it is known that illite and kaolinite are present,
one can lower the flow rates from the well to minimize the chan-
ces of dislodging fine particles and damaging the formation.

Shortcomings of Model-Dependent Inversion Methods. Previous
methods for predicting mineralogy are based on models. Model-
dependent inversion methods require user inputs such as mineral
compositions and mineral endpoints as well as subjective assump-
tions about which minerals are present and should be included in
the model. Computerized log-interpretation systems for predicting
lithology and mineralogy (Mayer and Sibbit 1980; Quirein et al.
1986; Freedman and Puffer 1988) are based on simultaneous
model-dependent inversions of suites of logging-tool measure-
ments. Theoretical tool-response equations or forward models are
used to represent the logging-tool measurements. The tool-
response equations are functions of the reservoir properties
including the lithologies and mineral concentrations to be deter-
mined. The predicted reservoir properties and mineral concentra-
tions are determined by minimizing cost functions, which are
weighted sums of the differences between the measured tool
responses and the response equations. There are usually not
enough independent measurements to solve for the many minerals
that can be present. The model-based inversions attempt to circum-
vent this problem by requiring the user to select a “mineral model”
that specifies a subset of minerals for which the minimization
determines the concentrations. Clearly, assuming a mineral model
is not a reliable method for predicting mineral concentrations
when there are additional minerals present that are not in the
assumed mineral model. Another shortcoming of model-based
inversions is that the models require specification of mineral end-
points such as densities, hydrogen indices, dielectric constants,
and thermal neutron-absorption cross sections. Accurate mineral
compositions and properties are not known because mineral com-
positions and properties can vary. This variability is especially no-
table for the more-complex minerals such as the clays, micas, and
feldspars. Requiring users to enter mineral properties, composi-
tions, and mineral models is one of the shortcomings of model-
based inversion methods. It means that mineralogy predictions
from model-dependent methods are user-dependent because dif-
ferent log analysts can predict different lithologies and mineral
concentrations from the same suite of well-logging measurements.

Linear-regression models were also used to predict mineral-
ogy. This approach is based on empirically developed linear-
regression equations for which the coefficients are found by fit-
ting the equations to a core database of elemental chemistry and
mineralogy (Herron and Herron 1996). This sequential approach
uses different regression equations, depending on the feldspar
concentration. Another recently published method uses the bulk
elemental composition to first determine lithology and constrain
the mineral selection, and then a sequential mass-balance
approach to solve for selected minerals (Pemper et al. 2006;
Jacobi et al. 2008).

Developments Now Enabling Quantitative and
Detailed Mineralogy Prediction

This section discusses the confluence of three recent develop-
ments that enable quantitative and detailed mineralogy determina-
tion from elemental spectroscopy logging-tool measurements.

New High-Performance Spectroscopy Logging Tool. The
recent development of a new high-performance neutron-induced
gamma ray spectroscopy geochemical logging tool (Radtke et al.
2012) is one of three critical developments that finally enable the
prediction of detailed and quantitative mineralogy from well logs.
The advanced technology in the new geochemical tool includes a
high-output pulsed-neutron generator (PNG), a high-resolution
LaBr;:Ce scintillation detector, and an advanced electronics-
acquisition system to measure very high gamma ray count rates.
The output of the PNG exceeds 3 x 10° neutrons per second, and
the gamma ray count rate measured by the scintillation detector
can exceed 2.5 x 10° counts per second. The high gamma ray
count rate and the high resolution of the LaBr;:Ce scintillation de-
tector make possible the improved accuracy and precision of the
derived dry-weight elemental concentrations.

The new tool measures gamma rays emitted by nuclei after
thermal neutron capture and after inelastic scattering of fast neu-
trons. The processing of the detected gamma ray spectra provides
accurate and precise dry-weight elemental concentrations includ-
ing Si, Ca, Mg, AL, K, Fe, S, Mn, and C. The high precision and
accuracy of these derived dry-weight elemental concentrations are
essential for determining detailed and quantitative mineralogy
and also total organic carbon.

Chemistry and Mineralogy Database. Another key develop-
ment is the compilation of a quality-controlled database contain-
ing the elemental composition and mineralogy of more than 2,000
samples. The database includes core samples from clean sands,
shaly sands, shales, carbonates, and mixed lithologies from both
conventional and unconventional resources composed of varying
geologic ages, depositional environments, and degrees of diagene-
sis from around the world. Thus, the mineral assemblages are
representative of common hydrocarbon-bearing sedimentary envi-
ronments. However, radial-basis mapping functions (RBFs) are
only as useful as the data on which they are based, and some car-
bonate environments were not represented in available samples.
Notably missing were pure anhydrites, dolomites, and some cal-
cite mixtures common in carbonate environments such as the
Middle East. These holes in the database were filled with artifi-
cially constructed mixtures of carbonates and evaporites to mini-
mize nonlinearity effects from missing data.

Careful quality control was exercised for all samples, accord-
ing to procedures described by Herron et al. (2014). Samples
were crushed, homogenized, and split with a rotary splitter, and
identical splits were used to measure chemical and mineral com-
position. Chemical concentrations were measured by a combina-
tion of X-ray fluorescence (XRF), inductively coupled plasma
mass spectrometry (ICP/MS), and LECO by SGS. The accuracy
of these measurements was vetted by blind analyses of Certified
Reference Materials from National Institute of Standards and
Technology (NIST), U.S. Geological Survey (USGS), and other
similar organizations. The mineralogy was determined by trans-
mission dual-range FTIR spectroscopy (Herron et al. 1997). The
quality of all measurements was monitored with the QCMin pro-
cedure in which the mineral concentrations determined for each
sample are multiplied by the chemical compositions of those
minerals and summed to produce a mineral-based estimate of the
multiple-element sample’s chemical composition. The estimated
chemical composition is then compared, element by element,
with the measured chemical composition to provide a measure of
the consistency between the two independent measurements.
Because the elemental composition was certified, a close agree-
ment between the measured and reconstructed composition is an
indication of overall data quality.

All minerals routinely analyzed by the FTIR procedure are
included in the database after grouping polymorphs (e.g., calcite
and aragonite or quartz and chert). The final mineral assemblage
includes 14 minerals: illite, smectite, kaolinite, chlorite, quartz, cal-
cite, dolomite, ankerite, plagioclase, orthoclase, mica, pyrite, sider-
ite, and anhydrite. Hydrous minerals such as gypsum and opal are
rare, but where present, they are treated as their anhydrous
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counterparts anhydrite and quartz, respectively. Barite concentra-
tions higher than 2 wt% are extremely rare and treated as contami-
nation and removed. Minor and trace minerals, such as magnetite,
zircon, rutile, etc., are not detected by our FTIR techniques, but the
compositional variability caused by their presence is captured in
the elemental data. Samples with minerals that are not common but
can be present at high concentrations, such as apatite and rhodo-
chrosite, are also not included in the database. In the final database
selected for this study, major framework minerals, including quartz,
calcite, dolomite, and anhydrite, are well distributed in the range of
0 to 100 wt%. Total clay content ranges from 0 to 92 wt%; illite is
the dominant clay, averaging more than half the total clay content.
Total feldspar concentrations range from 0 to 53 wt%. Mica (pre-
dominantly muscovite), pyrite, and siderite have maximum values
near 30 wt%, and ankerite has a maximum of 40 wt%.

Model-Independent Inversion Method. The model-independent
inversion method discussed in this paper was first proposed by
Freedman (2006; 2007) as a new approach for solving complex
reservoir-characterization problems for which accurate forward
models are not known. It was already successfully used to solve a
number of challenging problems (e.g., Anand et al. 2011; Gao
et al. 2011; Freedman et al. 2012, 2013). Our paper is the first
application of the method to the mineralogy problem. The model-
independent inversion method relies on having a comprehensive
calibration database of measurements. The database is used to
derive a model-independent mapping function that accurately rep-
resents the functional relationship between the dry-weight ele-
mental concentrations and the dry-weight mineral concentrations
for all the samples in the database. The mapping function is
expressed as a weighted sum of normalized Gaussian RBFs. The
weights and the widths of the Gaussian functions are determined
from the database.

The model-independent inversion method has a strong and
well-established mathematical foundation. Applied mathemati-
cians proved that RBF mapping functions provide more-accurate
interpolations for multidimensional functions of many variables
(Powell 2001) than do other interpolation methods. One of the
attractive features of RBF interpolation is that neither densely
populated nor large databases are required. Mathematicians have
established that one can obtain accurate results with sparsely
populated databases with scattered data (i.e., unevenly distrib-
uted) (Buhmann 2003). After the mapping function is derived
from the database, it is used to predict continuous logs of mineral
concentrations and matrix densities from dry-weight elemental
concentrations measured by the new gamma ray spectroscopy
logging tool.

The model-independent approach has many attractive features,
including the following:

e [t is easy to implement.

e It is applicable to both linear and nonlinear problems.

o [t works well with sparsely populated databases.

e Mineral compositions and endpoints are not needed.

e No mineral model is assumed.

e Number of outputs can exceed number of inputs.

There are no free parameters or subjective user inputs.

Log examples discussed later in this paper show predicted logs
of 14 mineral concentrations (i.e., illite, smectite, kaolinite, chlor-
ite, quartz, calcite, dolomite, ankerite, plagioclase, orthoclase,
mica, pyrite, siderite, and anhydrite) plus matrix densities. The
mineralogy logs are predicted from eight elemental concentrations
(i.e., Si, Al, Ca, Mg, K, Fe, S, and Mn) measured by the new geo-
chemical logging tool (Radtke et al. 2012).

Derivation of the RBF Mapping Function. This section sum-
marizes the derivation of the RBF mapping function. To save
space, some of the details are omitted, such as we do not display
the normalized Gaussian functions that one can find in Freedman
(2006). The latter paper also provides additional intuitive insight
as to how the method works. Our objective here is to construct a
mapping function from the database that one can use to predict
mineralogy and matrix densities from an n-dimensional vector X" of
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dry-weight elemental concentrations (e.g., n= 8) measured by the
logging tool. The mapping function, F(¥), is an m-dimensional
vector with elements that are the dry-weight mineral concentra-
tions and the matrix densities (e.g., m=15) predicted from the
log-derived elemental concentrations. The number of RBF outputs
exceeds the number of measurements. This does not violate any
rules of algebra because the mapping-function outputs are not
determined by solving a system of equations but by interpolation
in the multidimensional mineral output space. On the contrary,
model-dependent inversions with constraints require approxi-
mately as many measurements as there are outputs because, to
determine the outputs, one must solve a set of algebraic equations
that arise from fitting the measurements to the model equations.
This is the reason that model-dependent methods require use of a
mineral model because there are seldom enough measurements to
solve for all the minerals that can be present.

Consider a database of N samples in which the database meas-
urements include dry-weight elemental concentrations, dry-
weight mineral concentrations, and matrix densities. The mapping
function is constructed from the database as follows. One can
express the mapping function as a weighted sum of N normalized
Gaussian functions (¢) called the RBFs,

N
F®) =Y aolF - 5.
i=1

The summation in Eq. 1 is over the N samples in the database,
where X; is a vector with components that are the dry-weight ele-
mental concentrations (or a subset of the measured elemental con-
centrations) for the ith database sample. The weighting coefficient
¢; in Eq. 1 is an m-dimensional vector associated with the RBF
centered at the ith database sample. One can determine the widths
of the Gaussian RBFs from the Euclidean nearest-neighbor distan-
ces of X; in the input-measurement space. The mapping-function
predictions are not overly sensitive to the Gaussian function
widths, as discussed by Freedman (2006), and good results were
achieved by choosing the widths to be equal to, or of the order of,
the nearest-neighbor distances.

The arguments of the Gaussian RBFs in Eq. 1 are proportional
to the squared Euclidean norms in the n-dimensional input space;
for example,

n

I — %l = Z (% *xp,i)z-

p=1

If the database inputs and outputs are required to satisfy Eq. 1,
then the weighting coefficients ¢; in Eq. 1 for fixed Gaussian
widths are determined from the matrix equation,

where the N x N matrix @ is positive-definite. Its matrix elements
are normalized Gaussian RBFs for which the arguments are the
Euclidean norms of all pair-wise differences of the database ele-
mental concentrations:

®; ;= o(|1x; — %ll)

The N x m matrix C contains the weighting coefficients, and
the N x m matrix Y contains the measured database mineral con-
centrations and matrix densities for the database samples.

A few comments about the mapping function in Eq. 1 will be
instructive. It follows from Egs. 1 and 3, that, if the mapping func-
tion in Eq. 1 is evaluated at any database X}, then the mapping-
function output exactly reproduces, to within computer precision,
the database mineral concentrations and matrix densities for that
sample. Another useful and perhaps nonobvious property of the
mapping function in Eq. 1 is that the sum of the RBF-predicted
mineral weight percentages automatically sums to 100 because
the database mineral concentrations sum to 100%.

The RBF matrix (®) in Eq. 4 is positive-definite for Gaussian
RBFs so that the inverse matrix in Eq. 3 always formally exists



RBF Average
Database Range Absolute Deviation
Mineral (Wt%) (Wt%)
lllite 0-55 2.0
Smectite 0-34 0.9
Kaolinite 0-68 0.9
Chlorite 0-25 0.9
Quartz 0-99 1.3
Calcite 0-100 1.1
Dolomite 0-100 1.0
Ankerite 0-40 0.6
Orthoclase 0-27 0.8
Plagioclase 0-44 1.3
Mica 0-29 1.0
Pyrite 0-22 0.3
Siderite 0-32 0.3
Anhydrite 0-100 0.4
Matrix density (g/cms) 2.63-3.09 0.008

Table 1—Summary of database mineral concentrations and average
absolute deviations for RBF predictions.

and is nonsingular; however, if the condition number (ratio of the
largest to the smallest eigenvalue) of the ® matrix is large, then
the weighting coefficients can contain numerical noise arising
from the matrix inverse in Eq. 3. This noise can propagate by
means of Eq. 1 to the predicted mineralogy logs.

We observed this problem in a few of the many well-logging
data sets that we processed. Some of the predicted mineralogy
logs had a spurious high-frequency character that was not consist-
ent with either the vertical resolution of the tool or thin lamina-
tions in the reservoir. Plots of the weighting coefficients for each
of the minerals confirmed that some of the coefficients were
noisy. The condition number of the ® matrix for our database was
approximately 36,000. One can suppress the noise with mathe-
matical regularization to reduce the condition number and filter
out the noise that arises from the small eigenvalues in the ® ma-
trix. This was discussed by Freedman (2006). It leads to the fol-
lowing modification of Eq. 3,

C=@+a-1)"-v,

where o is a nonnegative “regularization parameter.” The regula-
rization parameter in Eq. 5 multiplies the N x N identity matrix
(/). The default value is o = 0; however, if the predicted mineral-
ogy logs appear noisy, then a small positive value of o can signifi-
cantly reduce the condition number of the @ matrix and filter out
any numerical noise in the weighting coefficients. The regulariza-
tion reduces noise and improves the repeatability of the logs. It
can, however, introduce some bias, and therefore, the tradeoff
between accuracy and precision determines how much regulariza-
tion one should use. We found that, for our database, a regulariza-
tion parameter equal to 0.5 significantly reduces the noise on the
mineralogy logs without adversely affecting the fidelity of the
predicted mineral concentrations and matrix densities.

One should note that, if a nonzero regularization parameter is
used, then the RBF-predicted mineral percentage concentrations
no longer sum to 100% because the regularization tends to
slightly suppress them. One can renormalize the predicted con-
centrations so that they sum to 100%. Likewise, if Eq. 5 is used to
compute the weighting coefficients in Eq. 1, then the mapping
function evaluated at database inputs X; closely approximates, but
no longer exactly reproduces, the measured database mineral con-
centrations and matrix densities.

Accuracies of Mapping-Function Predictions. One can use
the database itself to assess the accuracies that one can expect
from the mapping-function predictions. This is performed with
the so-called “leave-one-out” (LOO) method. In the LOO method,
a sample is removed from the database, and the mapping function
for the reduced database with (N — 1) samples is computed. The
mapping function from the reduced database is used to predict the
mineral concentrations and the matrix density for the sample that
was removed with the database elemental concentrations for the

removed sample. The sample that was removed is restored to the
database, another sample is removed, and this process is repeated
for all N database samples. The results of the LOO method are the
RBF-predicted mineral concentrations and matrix densities for the
N database samples. Then, one can compute the deviations of
each of the RBF predictions from the database values. The LOO
method is time-consuming because it requires computing N map-
ping functions. The LOO method needs to be performed only to
assess the accuracy of the mapping-function predictions.

The results of the LOO method applied to the worldwide data-
base are summarized in Table 1 and shown in Fig. 1. These
results were computed with a regularization parameter equal to
0.5. The LOO was also applied without regularization, and the
results (not shown here) showed very slightly higher average
absolute deviations and slightly lower average deviations, as
expected. The plots in Fig. 1 show RBF-predicted mineral con-
centrations on the y-axis and the measured values on the x-axis.
On each plot, we show three statistical quantities characterizing
the deviations (i.e., RBF predictions minus the measured values).
These quantities are the average absolute deviation (aad), average
deviation (ad), and correlation coefficient (cc).

The crossplots in Fig. 1 show comparisons of predicted and
measured values for all database samples. For most of the 14 pre-
dicted mineral concentrations, the average absolute deviations, a
measure of their scatter, are less than 1.0 wt%. Also, for the ma-
trix density, the average absolute deviation is less than 0.01 g/
cm?. The average deviations, which are a measure of bias, are
generally very small. Finally, the correlation coefficients are very
good for most of the predicted mineral concentrations. Fig. 1
shows that the smallest relative errors and best correlation coeffi-
cients across the entire dynamic range are observed for the frame-
work minerals: quartz, calcite, dolomite, and anhydrite. As a
general rule, these are the easiest minerals to predict from elemen-
tal concentrations because their compositions do not tend to devi-
ate significantly from their stoichiometric values, and their
compositions do not highly correlate with each other. In contrast,
a higher degree of scatter exists for the feldspar, clay, and mica
minerals: orthoclase, plagioclase, illite, smectite, kaolinite, chlor-
ite, and mica (predominantly muscovite). There are at least four
inherent factors that cause this. First, these minerals are all alumi-
nosilicates for which there are natural variations in composition.
Second, there is a high degree of similarity in the compositions of
many of these minerals. Third, there is a natural correlation in the
occurrence of some minerals such as illite and smectite. Finally,
most of these minerals have a limited dynamic range, as one can
see in both Fig. 1 and Table 1.

Log Examples in Cored Wells

Logging Speed and Depth of Investigation. Logging speeds for
the new neutron-induced gamma ray spectroscopy tool are typi-
cally in the range of 500 to 1,000 ft/hour which provides measure-
ments with agreeable precision. The logs discussed in this paper
were acquired at logging speeds in this range.

The integrated radial depth of investigation (DOI) (e.g., radius
at which 90% of the measurements are derived) depends on poros-
ity, fluid types, saturations, and borehole size. Modeling has shown
that the DOI is generally in the range of approximately 6 to 10 in.
and is comparable to that of neutron-porosity logging tools.

Processing Summary. This section discusses RBF processing of
three unconventional wells for which core-measured mineralogy
and matrix densities are available for comparison. The three wells
are from very different areas and have very different lithologies
and mineralogies. The RBF mapping function in Eq. 1 was used
to process the elemental chemistry logs from the new geochemi-
cal logging tool. No other data were used to obtain the results
shown in this section. RBF processing is simple and very fast
because only the summation in Eq. 1 is needed, and hundreds of
feet of elemental chemistry data from the new geochemical tool
can be processed in a few seconds to produce continuous logs of
mineral concentrations and matrix densities. It is worth repeating
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Fig. 1—RBF-predicted vs. measured dry-weight mineral concentrations in weight percentage and dry-weight matrix densities in g/
cm?® computed with the LOO method for a worldwide database including clean sands, shaly sands, shales, carbonates, and mixed
lithologies. The average absolute deviations (aad) for all the predicted minerals except for illite are either close to or less than 1.0
wt%, and the aad for the predicted matrix densities (MDens) is less than 0.01 g/cm?.

South Texas Eagle Ford Shale Well. The first log example is
from a well drilled in the Eagle Ford shale formation in south
Texas, which is one of the most prolific oil-producing reservoirs
currently in North America. To the right of the depth track in
Fig. 3 are continuous logs of RBF-predicted mineral-weight frac-
tions and matrix densities over the cored interval shown as solid
curves. The solid circles are the core measurements. A color-coded

again that the RBF method does not require any user inputs or
have any tunable parameters. All the log data shown in this
section were processed with the same RBF mapping function.
Fig. 2 shows the eight elemental weight fractions that are the log-
ging-tool inputs and the RBF mapping-function outputs, which
are continuous logs of 14 mineral-weight fractions and the
matrix density.

Outputs (y)

Inputs (X)

<1
1
T

& N

- N
F(9=2co(lx-xl)

i=1

Fig. 2—A schematic of the RBF mapping-function processing of the geochemical logging-tool data. The elemental concentrations
from the geochemical logging tool are inputs to the RBF mapping function (Eq. 1), which is shown here. The outputs of the map-
ping function are the 14 minerals and the MDens shown.
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Fig. 3—RBF processing of the geochemical-tool data from an unconventional well in the Eagle Ford shale formation in south
Texas. The curves in the tracks to the right of the depth track show continuous logs of RBF-predicted dry-weight matrix densities
and mineral concentrations. The circles are the dry-weight matrix densities and mineral concentrations derived from core meas-
urements. The core mineral concentrations were measured by FTIR. A color-coded lithology track is shown to the left of the depth
track. Observe the good quantitative agreement between the log-predicted mineral concentrations and the core-measured concen-

trations in this complex formation.

lithology column is shown to the left of the depth track. The sum
of the 14 RBF-predicted mineral fractions is equal to unity.

This well has a complex mixed lithology composed of signifi-
cant amounts of calcite, quartz, and clay minerals. Although illite
is, by far, the dominant clay mineral, there are measurable quanti-
ties of both kaolinite and smectite. Observe the excellent agree-
ment between the RBF-predicted logs and the core measurements.
In particular, note that the method correctly evaluates minerals
that are quantitatively significant such as illite, kaolinite, smectite,
quartz, and calcite. Equally important is the fact that the RBF does
not predict or overestimate mineral fractions that are absent or
present in only trace amounts, such as chlorite, muscovite, feld-
spars, and other carbonate minerals. It was not previously possible
to quantitatively determine these complex minerals from well-log-
ging data. The smectite concentration is particularly important
because of its adverse impact on both conventional and unconven-
tional resources, and here the predicted smectite concentrations are
in good agreement with the measured values. The RBF-predicted
dry-weight matrix densities shown in Fig. 3 are also in excellent
agreement with dry-weight densities measured on the cores.

As a check on the integrity of the RBF-predicted logs in Fig.
3, we removed the 20 core samples in our database from this well.
A reduced mapping function was computed from the remaining
database samples. The reduced mapping function was used to
reprocess the elemental chemistry. The mineralogy and matrix
density results from the reduced database processing are essen-
tially identical to the results in Fig. 3, which demonstrates the
robustness of our worldwide database and the excellent general-
ization properties of RBF mapping functions. Similar tests per-
formed with other wells also confirm this conclusion.

West Texas Wolfcamp Shale Well. The second log example
is from a well drilled in the Wolfcamp shale in west Texas. To the
right of the depth track in Fig. 4 are continuous logs of RBF-pre-
dicted mineral-weight fractions and matrix densities over the
cored interval shown as solid curves. The solid circles are the core

measurements. A color-coded lithology column is shown to the
left of the depth track. The sum of the 14 RBF-predicted mineral
fractions is equal to unity.

The Wolfcamp shale is currently one of the most prolific
unconventional oil reservoirs in the Permian Basin. There are three
distinct cored intervals in this well with noncored intervals separat-
ing them, as one can see from the log in Fig. 4. The dominant min-
erals in this complex lithology are siliciclastics with only very
small amounts of carbonate present. There are significant amounts
of quartz and feldspars, for which the RBF-predicted mineral-
weight fractions are in quantitative agreement with the core-weight
fractions. Also present in this well are all four clay types, for
which the RBF-predicted weight fractions are in good overall
agreement with the core-measured values. The small amounts of
ankerite predicted by the RBF processing are consistent with the
small weight fraction measured on the cores. It is worth noting
again that the RBF-predicted weight fractions do not overestimate
the weight fractions for minerals such as pyrite, dolomite, and
anhydrite, which are present only in trace amounts. The RBF dry-
weight matrix densities are seen to be in quantitative agreement
with the dry-weight matrix densities measured on cores.

Canadian Montney Shale Well. The third log example is
from a well drilled in the Montney shale in Canada. To the right
of the depth track in Fig. 5 are continuous logs of RBF-predicted
mineral-weight fractions and matrix densities over the cored inter-
val shown as solid curves. The solid circles are the core measure-
ments. A color-coded lithology column is shown to the left of the
depth track. The sum of the 14 RBF-predicted mineral fractions is
equal to unity.

This well has a complex mixed lithology with significant
amounts of quartz, calcite, dolomite, plagioclase (Na feldspar), or-
thoclase (K feldspar), illite, and smectite, as shown in Fig. 5.
There is good quantitative overall agreement between the RBF
and core mineralogy. Particularly noteworthy is the quantitative
prediction of quartz, clay minerals, and mica, which is very
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Fig. 4—RBF processing of the geochemical-tool data from an unconventional well in the Wolfcamp shale formation in west Texas.
The curves in the tracks to the right of the depth track show continuous logs of RBF-predicted dry-weight matrix densities and
mineral concentrations. The circles are the dry-weight matrix densities and mineral concentrations derived from core measure-
ments. The core mineral concentrations were measured by FTIR. A color-coded lithology track is shown to the left of the depth
track. Observe the good quantitative agreement between the log-predicted mineral concentrations and the core-measured concen-

trations in this complex formation.

challenging in the presence of so much feldspar, although the
RBF-predicted feldspar is underestimated relative to that from
core. Particularly noteworthy once again is the prediction of
smectite concentrations that are consistent with the core measure-
ments. The calcite and dolomite predictions are also reasonably
good. The RBF-predicted matrix densities are observed to be in
good agreement with the measured values.

Repeatability of Log-Derived Mineralogy. As discussed previ-
ously, the precision of the RBF-predicted mineral concentrations
and matrix density logs is improved by using a nonzero regulari-
zation parameter (o) to compute the weighting coefficients in Eq.
1. Applying nonzero regularization reduces the condition number
of the matrix inversion in Eq. 3 and serves to filter out numerical

noise that arises from inverting the matrix. For all the results
shown in this paper, we used a mapping function computed with a
regularization parameter of 0.5 in Eq. 3. This reduces the condi-
tion number of the matrix inversion in Eq. 3 from 36,000 for
=0 to 4 for =0.5. The regularization filters out the effects of
the small eigenvalues in the @ matrix. This causes no loss of in-
formation because the small eigenvalues contribute negligible in-
formation to the weighting coefficients.

Fig. 6 shows to the left of the depth track the RBF-predicted
mineral concentrations for both a main and a repeat pass over an
interval in a heavy-oil well in the San Joaquin Valley, California.
To the right of the depth track are logs of elemental concentra-
tions. The mineral concentrations and matrix densities predicted
for the two passes are in good overall agreement. The larger

Grain Density Chlorite Illite: Kaolinite Smectite Mica

Quartz

Dolomite gj Pyrite

K-Spar Na-Spar Calcite Siderite | Anhydrite

L

Il
in
|
a

L
:
:
é

i
Al
53
1

Fig. 5—RBF processing of the geochemical-tool data from an unconventional well in the Montney shale formation in Canada. The
curves in the tracks to the right of the depth track show continuous logs of RBF-predicted dry-weight matrix densities and mineral
concentrations. The circles are the dry-weight matrix densities and mineral concentrations derived from the core measurements.
The core mineral concentrations were measured by FTIR. A color-coded lithology track is shown to the left of the depth track.
There is good overall agreement between the predicted and the core-measured mineral concentrations in this very complex

formation.
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Fig. 6—Continuous logs of RBF-derived matrix densities and mineral concentrations for both a main and a repeat pass in a well
drilled in the San Joaquin Valley, California. The RBF-predicted logs for the two passes are shown in the tracks to the left of the
depth track. The tracks to the right of the depth track show the elemental concentrations of a few important elements from the two
passes. The RBF-predicted matrix densities and mineral concentrations for the two passes agree well except in a few intervals in
which the elemental concentrations for Al and K do not repeat very well.

differences between the main and repeat mineralogy logs at some
depths are caused by differences in the main and repeat log ele-
mental concentrations, especially in the Al and K weight frac-
tions. It should be clear from this example that quantitative log
predictions of mineral fractions and matrix densities are possible
only when one can measure accurately the elemental concentra-
tions with high precision. This requires a high-performance geo-
chemical tool with accurate data-processing algorithms, including
borehole corrections that can generate accurate and precise ele-
mental concentrations.

Quality Checks on RBF Mineralogy Predictions. This sec-
tion addresses the important question of how one detects when the
input elemental chemistry data are not well-represented by the
calibration database samples and therefore when one should flag
the RBF predictions as not trustworthy. The question of what to
do when we are “outside of the database” is not specific to the
RBF method but is relevant to all empirically derived methods
that are based on databases. For example, Archie used a core data-
base of clean Gulf Coast sandstone formations to derive his fa-
mous saturation equation. It is well-known that the equation does
not account for clay-conductance effects in freshwater shaly sand
formations, where it underestimates oil saturations.

Two of the RBF quality-control checks are based on a level-
by-level analysis of the elemental-concentrations vector that is
input from the logging tool. The first quality check is to test
whether each of the eight input elemental concentrations (e.g., Si,
Al, Ca, Mg, K, Fe, S, and Mn) is within the range of the database
chemistry. If a single input elemental concentration is outside the
database range for that element, then a warning flag is turned on
at the depths for which this occurs.

The second quality check can detect a situation in which the
input elemental chemistry falls within the database range but
might be near the edge or boundary of the database. In this case,
there might be too few nearby database samples for accurate RBF
interpolation. To address this case, we compute the Euclidean dis-
tances of the input elemental-concentrations vector from the data-
base elemental concentrations. A “proximity flag” is turned on if
there are less than a specified number of database samples (e.g.,
four) within a specified Euclidean radius in the elemental-chemis-
try space. This radius is on the order of the average of the data-
base nearest-neighbor distances used to determine the widths of
the Gaussian RBFs. One can determine the optimal number of
nearby database neighbors and the optimal radius by simulation
and confirm with field data.

The third quality check uses the RBF-predicted dry-weight min-
eral concentrations to compute reconstructed or theoretical dry-
weight elemental concentrations. The elemental-reconstruction
computation assigns fixed elemental compositions to each mineral.
The theoretical elemental-concentrations computation is conducted
for the major elements present in sedimentary rocks (i.e., Si, Al, K,
Fe, S, Ca, Mg, and Na). One can detect incorrectly predicted min-
eral concentrations in intervals in which there are significant devia-
tions between the reconstructed elemental concentrations and the
log-derived elemental concentrations. The usage and interpretation
of reconstructed elemental concentrations to quality check mineral-
ogy are discussed in much more detail by Herron et al. (2014). One
can use deviations between the reconstructed and tool-derived ele-
mental concentrations to flag intervals in which the predicted min-
eral concentrations are likely to be incorrect.

Although our existing database contains samples of clean sands,
shaly sands, shales, carbonates, and mixed lithologies, one could
expand it in future developments and make it more comprehensive
by adding additional core data for which the mineralogy is absent
or not well-represented by the existing database. Of course, any
added core chemistry and mineralogy data must be of the same
high quality as the data in the existing database to enable quantita-
tive mineralogy predictions. After the database is augmented with
the new data, it takes only a few minutes of computer time to com-
pute a new and more-universal RBF mapping function.

Conclusions and Summary

This paper presents a robust, general-interpretation procedure to
quantitatively derive accurate, detailed mineral concentrations
from geochemical-tool-logging data. This work helps to solve a
long-standing and important problem in formation evaluation. It
was made possible by the confluence of the three recent develop-
ments of a new geochemical logging tool, a new quality-controlled
worldwide core database of measured dry-weight elemental con-
centrations and dry-weight mineral concentrations, and a new
model-independent inversion method. All three of these recent
developments are equally important and are essential enablers for
quantitative mineral predictions.

We discussed the high-output neutron generator, high-resolu-
tion scintillation detector, and advanced electronics in the new
geochemical logging tool. These advances in technology together
with improvements in data processing make it possible to derive,
from the measured gamma ray spectra, robust and accurate
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elemental concentrations including Si, Al, Ca, Mg, K, Fe, S, and
Mn. These elements are absolutely essential for quantitative and
detailed mineralogy prediction in sedimentary rocks.

The database includes cores from conventional and unconven-
tional reservoirs worldwide. The measurements on the database
cores include dry-weight elemental concentrations, dry-weight
mineral concentrations measured by FTIR spectroscopy, and dry-
weight matrix densities. We also discussed database quality checks
that were used to ensure the consistency of the measured elemental
concentrations and the measured mineral concentrations. The
quality checks are essential to ensure the construction of an accu-
rate calibration database, which is essential for developing and
testing methods for quantitative and detailed mineralogy predic-
tions. Continuing investment in the database expansion to include
minerals that are not represented in the current database might ulti-
mately achieve a more-universal database that can predict accurate
mineralogy anywhere in the world as well as improve the accuracy
of the RBF-predicted mineralogies.

The new model-independent inversion method uses an RBF
mapping function derived from the calibration database to predict
quantitative and detailed mineral concentrations and matrix den-
sities. The shortcomings of traditional model-dependent inversion
methods are discussed. The features of the new model-independ-
ent method that overcome the limitations of the model-dependent
methods are discussed. The derivation of the RBF mapping func-
tion from the database is explained. The LOO method by which
one can determine the expected accuracies of the RBF mapping
function from the database is explained, and results of the LOO
method are shown and discussed.

We processed a subset of the elemental-concentrations data
acquired by the new geochemical logging tool in three unconven-
tional shale wells. The same RBF mapping function was used to
process the data from all three wells. The inputs to the RBF map-
ping function were continuous logs of the eight dry-weight ele-
mental concentrations (i.e., Si, Al, Ca, Mg, K, Fe, S, and Mn)
derived from the logging-tool measurements. The outputs from
the RBF mapping function were continuous logs of 14 dry-weight
mineral concentrations (i.e., illite, smectite, kaolinite, chlorite,
quartz, calcite, dolomite, ankerite, orthoclase, plagioclase, mica,
pyrite, siderite, and anhydrite) plus the matrix density. The RBF-
predicted minerals and matrix densities were compared with core
results. The core mineralogy was measured with FTIR spectros-
copy. The comparisons of the RBF-predicted and core-measured
dry-weight mineral concentrations and matrix densities are shown
to be in good overall agreement. These predictions were obtained
without using any adjustable parameters or user inputs.

We discussed three quality checks on the RBF-predicted min-
eralogy. The input elemental concentrations are tested at each
depth to determine if they are within the range of the database
concentrations. Another test determines the proximity of the input
elemental concentrations at each depth to the database samples to
determine if there are enough nearby samples to provide accurate
RBF interpolation. If these tests show that the input data are
“outside the database™ at some depth, then a warning flag is used
to indicate that the predicted mineralogy and matrix density are
questionable at that depth. The third quality check compares ele-
mental concentrations from the logging tool at each depth with
those reconstructed from the predicted mineralogy. Significant
deviations between the elemental concentrations from the logging
tool and the reconstructed concentrations are indicative of errors
in the predicted mineralogy.

Nomenclature

¢; = m-dimensional vector of weighting coefficients for the
ith database sample fori=1, ..., N

C = N x m weighting matrix with rows that are the vectors,
Ci

F(X) = m-dimensional RBF mapping function defined in Eq. 1

m = dimensionality of the RBF mapping function (i.e.,
equal to the number of mineral-concentration outputs
plus one)
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n = number of independent variables in the mapping function
(i.e., equal to the number of elemental-concentration
inputs)

N = number of samples in the database

X = n-dimensional vector with elements that are the ele-

mental-concentrations input from the logging tool

n-dimensional vector with elements that are the ele-
mental concentrations for the ith database sample

Y = N x m matrix with elements that are the mineral con-

centrations and matrix densities of the database
samples

= nonnegative regularization parameter in Eq. 3

=l
Il

Z
Il

o(|] normalized Gaussian RBF
® = N x N RBF matrix with elements, ®;; = ¢(||x; — Xj||)
.|| = double bars denoting the Euclidean norm of the vector
argument
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