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Theory of induced-polarization logging
in a borehole

R. Freedman* and J. P. Vcqiatzts]

ABSTRACT

Currently, there is interest by the petroleum well­
logging industry in the potential use of induced polar­
ization (IP) measurements to improve formation evalu­
ation in shaly sands. Shell Development Company has
constructed an experimental four-electrode IP and resis­
tivity logging tool to obtain downhole measurements in
shaly sands. This study contributes to the theoretical
understanding and interpretation of the dynamic (i.e.,
time-dependent) response of this type of downhole IP
logging device,

A low-frequency (e.g., 32 Hz or less) electric current
oscillating at a single fixed frequency is 'applied between
a pair of current electrodes in a borehole. The resulting
voltages induced between pairs of potential measuring
electrodes in the borehole are calculated by solving the
time-dependent Maxwell's equations. Inductive electro­
magnetic (EM) coupling contributions to apparent (e.g.,
measured) IP phase angles are automatically taken into
account. The model is applied to the study of normal
logging arrays for which the voltage measuring elec­
trodes are interior to the current electrodes. The model
responses are calculated for normal arrays in both infi-

INTRODliCTION

Background

Induced polarization (IP) phenomena were discovered more
than fifty years ago (Allaud et al., 1977, 30-34; Schlumberger,
1920). The discovery and documentation are credited to C.
Schlumberger who discovered the IP effect while conducting
surface exploration measurements in the search for metallic
ore deposits. Schlumberger's field measurements involved es­
tablishing electric currents in the earth and measuring poten­
tial differences between pairs of reference electrodes. He ob­
served that when the electric currents were interrupted, the
measured potential differences decayed very slowly. The decay
rate was much slower than could be accounted for by the
finite conductivity of the earth. The earth appeared to be

nitely thick non invaded formations and infinitely thick
invaded formations. EM coupling contributions to ap­
parent IP phase angles have an approximately universal
dependence on a scaling parameter defined here. The
scaling relationship permits the quantitative estimate of
EM coupling effects for specific tool parameters (i.e.,
electrode spacings and frequencies) and formation
characteristics (i.e., apparent conductivities). Therefore,
scaling relationships of this type should be useful in the
design of IP tools. An inverse method, developed for
determining true formation IP phase angles and re­
sistivities from apparent values measured by an IP tool,
utilizes data from multiple pairs of voltage-measuring
electrodes and exploits the fact that, for the systems of
interest, the inverse resistivity and IP problems can be
"decoupled...

The assumption that IP phase angles have a loga­
rithmic dependence on frequency over a decade fre­
quency interval leads to a nonlinear relationship be­
tween percent frequency effect (PFE) and IP phase
angle. This nonlinear relationship agrees well with ex­
perimental data.

acting like a giant capacitor that had been polarized by the
applied current and was then discharging. One of the many
intriguing aspects of IP is that wet rocks containing metallic
minerals and/or clays can exhibit effective relative dielectric
constants, at frequencies below 1.0 Hz, as large as 108 (Fuller
and Ward, 1970). These large dielectric constants are more
than six orders of magnitude greater than the dielectric con­
stants of the rock constituents (e.g., brine, hydrocarbons, clays,
metallic minerals, etc.).

The physics of the IP phenomena cannot be understood
simply in terms of the bulk properties of the rock constituents.
Most physical models (Sumner, 1976) which attempt to ex­
plain IP focus on the interactions between cations in the brine
and electric charges (electrons in the case of metallic minerals
and anions in the case of clay minerals) at the mineral sur­
faces. A different approach has recently been discussed by Sen

Manuscript received by the Editor February 28,1985; revised manuscript received February 13, 1986.
*Sehlumberger WellServices, P.O. Box 2175, Houston, TX 77252-2175.
;Shell DevelopmentCo., P.O. Box 481, Houston, TX 77001.
(:' 1986 Society of Exploration Geophysicists. All rights reserved.

1830

D
ow

nl
oa

de
d 

06
/1

6/
15

 to
 1

63
.1

88
.8

9.
18

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



Theory of IP Logging in a Borehole

LIST OF SYMBOL';

1831

A = Vector potential defined via
equation (12) (A).

a = Borehole radius (m).
AM, AN = Distances separating the A

electrode from the M and N
electrodes, respectively.

B = 1-10 H = Magnetic induction (W/m 2
).

BM, BN = Distances separating the B
electrode from the M and N
electrodes, respectively.

D = E'E = Electric displacement vector
(coulomb/m2).

E = Electric field intensity (V/rn],
Pil(R l' R2' h) = Deviations of theoretically

computed apparent
resistivities from their
measured values as defined in
equation (28) (Q . mi.

FE == PFE/IOO = Frequency effect
(dimensionless).

H = Magnetic field intensity
(A-turn/m).

I = Amplitude (i.e., peak value)
of the alternating current IT(t).

Idl) = Alternating current in the
insulated cables connecting
the A and B electrodes to
the power supply (A).

.l, = Current density in the insulated
cable separating the A and B
electrodes defined in equation
(20) (A/m 2

).

K = True effective relative dielectric
constant of a medium
(dimensionless).

k = Complex propagation constant
defined in equation (19)
(m- I ) .

L; = Effective length squared as
defined in equation (27).

PFE = Percent frequency effect defined
in equation (C-2).
(dimensionless).

Ro = Apparent formation resistivity
defined in equation (4) (Q. mi.

R~) = Measured values of apparent
resistivity where superscripts
i = I, 2, 3 denote a particular
set of electrode spacings
(Q·m).

R~i1(R l' R1 , b) = Theoretically computed values
of apparent resistivities where
R I' R2' and b denote the
invaded zone resistivity, the

uninvaded zone resistivity
and the invaded zone radius,
respectively Ifr mi.

Rm = Resistivity of drilling mud
(Q·m).

R, = Formation resistivity (Q. mi.
R"o = Invaded zone resistivity (Q. m).
rxo = Invaded zone radius (m).

t = Time [s),
V(Po, z) = complex pbasor voltage from

which VMN • I and VMN, Q are
calculated using equations
(22) arid (23), respectively (V).

Vo = Amplitude of VMN (t) (V).
VMN (t) = Complex voltage induced

between the measuring
electrodes M and N (V).

VMN• Q = Quadrature voltage .I:.omponent
induced between the
measuring electrodes M and
N (V).

VMN• I = In-phase voltage component
induced between the
measuring electrodes M and
N (V).

2 M == AM = See definition of AM (m).
ZN == AN = See definition of AN (m],

eS = (2/001-10 a)1/2 = Classical EM skin depth where
1-10 = 4n x 10- 7 Him is the
magnetic permeability of a
vacuum (m).

E' = KEo = Dielectric constant of a medium
(F/m).

Eo = (36n)- 1 x 10- 9 = Dielectric constant of a vacuum
(Fjrn),

e = IP parameter of a medium as
defined in equation (6)
(radians).

0, = Formation IP parameter
(radians).

Oxo = Invaded zone IP parameter
(radians).

O~) = Measured values of apparent
formation phase angles from
which EM effects have
been subtracted (mradians).

0
0

= Apparent formation phase
angles defined in equation
(5) (mradians).

~O = EM coupling contribution to
apparent phase angles as
defined in equation (25t

1-1 = Magnetic permeability of a
medium (Him).
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1832 Freedman and Vogiatzis

Po = Radial coordinate of the
measuring electrode
cables (m).

p, = True charge density (see
Maxwell's equations).

(p, <1>, z) = Cylindrical coordinates.
0" = Conductivity of a medium (S/m).

0"* = Complex conductivity defined in
equation (17) (S/m).

<I> = Scalar potential defined in
equation (14) (V).

ro = Angular frequency of the
alternating current provided

by the power supply. Also
the frequency of the resulting
electromagnetic fields
(radians/s),

Subscripts

a denotes apparent formation
parameter.

t denotes formation parameter.
xo denotes invaded zone parameter.
m denotes borehole or drilling

mud parameter.

(1981). He considers a model which focuses on the role of
geometrical effects and argues that the large dielectric con­
stants in rocks can be caused by the presence of rock grains
with high aspect ratios. In spite of the voluminous literature
on the IP effect, the complexity of the problem has led to
considerable controversy and there are no generally accepted
models which explain all of the IP observed phenomena.

The primary commercial application of IP has been for
exploration of metallic ore deposits by surface IP measure­
ments. The effects of EM coupling and the theory of IP sur­
face measurements have been studied extensively in con­
nection with mineral exploration (Dey and Morrison, 1973;
Wynn and Zonge, 1977; Nair and Sanyal, 1980; Madden and
Cantwell, 1967). The ability of IP to detect disseminated sul­
fide minerals has also been used to estimate the sulphur con­
tent, and, therefore, the quality of in-situ coal deposits. By
comparison, the use of IP to evaluate or locate petroleum
reservoirs has not been commercially successful. The early
work on applying IP to the in-situ study of petroleum reser­
voirs was conducted in the U.S.S.R. Dakhnov et al. (1952)
describe IP well-logging field equipment and discuss both lab­
oratory and field IP measurements. Their interpretation of the
field measurements is qualitative, but their field data suggest
that IP might be useful for identification of lithology and for
locating permeable zones. IP and spontaneous potential (SP)
logs in shaly sands have the same general character.

During the decade 1950-1960, the development and use of
IP for mineral exploration grew, while interest in IP for petro­
leum reservoir studies seemed to decline. In the past decade, a
number of publications have revived interest in applying IP
borehole logging to evaluation of shaly sand reservoirs. Hoyer
and Rumble (1976) give experimental data which indicate that
the dielectric constants of shaly sands are approximately lin­
early proportional to their cation exchange capacities (QJ
The paper by Snyder et al. (1977) reviews the state-of-the-art
in IP well-logging methods and expresses the belief that bore­
hole measurements might permit the in-situ measurement of
Qv in shaly sand reservoirs. More extensive studies of IP in
shaly sands have recently been reported by Vinegar and
Waxman (1984). Their results confirm the results of Hoyer and
Rumble (1976) and lead to a model equation for the quadra­
ture conductivity of shaly sands. Vinegar et al. (1985) report
on tool development, borehole departure curves, and field

tests of an experimental downhole IP tool constructed at Shell
Development Company for IP logging of shaly sands.

Previous work and scope of this paper

In spite of decades of research on IP, there has been little
work in the literature on quantitative modeling of the bore­
hole responses of IP tools. Brant and The Newmont Explora­
tion Staff (1966) calculate borehole departure curves for a
model zero-frequency IP device consisting of two point elec­
trodes in a borehole. This pioneering effort failed to address a
number of important aspects of downhole IP logging, includ­
ing the inverse problem for the effects of invasion and the
effects of EM coupling on the tool response. Vinegar et al.
(1985) present borehole IP and resistivity departure curves
computed using Seigel's (1959) coupling-free theory of IP. Vin­
egar et al. treated EM coupling using an approximation based
on expressions derived by Sunde (1948) and Wait (1959) valid
in an infinite homogeneous medium. The paper by Vinegar et
al. (1985) did not address the inverse invasion problem for IP
logging.

A dynamic model for studying the responses of downhole
unfocused four-electrode electrical logging devices is discussed.
The model and the theory underlying it provide a consistent
analysis of resistivity and IP logging in a borehole. The model
permits obtaining apparent formation resistivities and IP pa­
rameters from measured logging data. The exact dynamic re­
sponse of the model is calculated, and EM contributions to
apparent resistivities and apparent IP parameters are taken
into account automatically. True formation resistivities and IP
parameters are obtained from the apparent values by solving
appropriate boundary value and inverse problems. Examples
illustrate under what conditions true formation resistivities
and IP parameters can be obtained from measured tool re­
sponses. The results discussed here are valid for (1) an infi­
nitely thick, noninvaded formation penetrated by a borehole,
and (2) an infinitely thick invaded formation penetrated by a
borehole. The model's use in other logging geometries is not
considered.

In addition to the inductive coupling effects from wave
propagation, there are also capacitive coupling effects from
current leakage between the current and potential-measuring
wires and electrodes (Wait, 1959; Madden and Cantwell,
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Theory of IP Logging in a Borehole 1833

ematical relationship is as follows. If the current has the form

where Va is the amplitude of the oscillating voltage and 0a is
an apparent phase angle which describes the phase relation
between IT(t) and VMN(t). Note that the induced voltage in
equation (2) consists of a component VMN. I which oscillates
in-phase with IT and a quadrature component VMN, Q which
oscillates 90 degrees out-of-phase with IT' Equation (2) shows
that

Definition of apparent formation resistivities
and phase angles

The in-phase and quadrature voltage components measured
by an apparatus such as that in Figure 1 can be used to define
apparent resistivities Ra and apparent phase angles ea' The
apparent resistivity (in Q. m) is obtained from VMN. 1 using the

A phase-sensitive detector such as the one shown in Figure 1
measures both the in-phase and quadrature components of the
induced voltage, The in-phase voltage component is utilized to
determine an apparent formation resistivity. The quadrature
component of the induced voltage which contains the IP re­
sponse is not measured in conventional resistivity logging. An
experimental four-electrode IP tool which operates according
to principles similar to those described has been constructed
by Shell Development Company (Vinegar et aI., 1985).

1967). We consider an idealized model and neglect the capaci­
tive coupling which can also obscure the true IP response of
the formation. In practice these effects can be minimized by
prudent tool design (Vinegar et al., 1985).

Previous works on IP have frequently assumed a linear
relationship between the two most widely used IP parameters,
percent frequency effect (PFE) and phase angle (Zonge et aI.,
1972). We derive a nonlinear relationship between them. In
the limit of small phase angles (e.g., shaly sands), this relation­
ship is approximately linear and is in excellent agreement with
the experimental data of Vinegar and Waxman (1984). In
rocks containing metallic minerals, the phase angles can be
large and the nonlinear relationship proposed here also com­
pares favorably with the experimental data of Zonge et al.
(1972).

Downhole instrumentation and measurements

Figure 1 displays a schematic of a model four-electrode IP
logging device. In practice the power supply, phase-sensitive
detector, and amplifier are located downhole (Vinegar and
Waxman, 1982). The electrode system which consists of point
electrodes A, B, M, and N is suspended from an armored
cable (not shown). During the logging operation, the electrode
system is raised and lowered in the borehole at fixed distances
between the electrodes. For the logging method described
here, the borehole must contain a conductive drilling mud,
that is, wells drilled with oil-base muds cannot be logged. A
power supply provides an alternating current IT (t) of fixed
angular frequency co and amplitude I in the insulated cable
between the current electrodes A and B. This results (via Max­
well's equations) in an oscillating voltage VMN(t) being induced
between the M and N electrodes which are connected by insu­
lated cables to a phase-sensitive detector and amplifier. The
induced voltage VMN(t) also oscillates at angular frequency co
(i.e., because of the linearity of Maxwell's equations), but in
general the voltage will be out-of-phase with IT(t). The math-

IT = 1 cos cot,

then the induced voltage will be of the form

VMN(t) = Va cos (cot - 0a)'

VMN, I == Va cos e.,
and

VMN,Q == Va sin 0a'

(1)

(2)

(3a)

(3b)

PHRSE SENS ITIVE
DETECTOR RND

SIGNRL RMPLIFIER

RPPRRENT PHRSE
RND RPPRRENT
RES ISTIVITY
CRLCULATOR

FIG. 1. A schematic of a four-electrode normal IP logging tool.

D
ow

nl
oa

de
d 

06
/1

6/
15

 to
 1

63
.1

88
.8

9.
18

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



1834

relation

Freedman and Vogiatzis

with

(5)

where E' = KEo is the effective dielectric constant and Il is the
magnetic permeability of the medium.

Note that the dielectric constant, and therefore the IP effect,
enters Maxwell's equations through the displacement current
term in equation (8). The magnetic permeability u can be re­
placed by the permeability of a vacuum, Ilo = 41t X 10- 7 Hjrn.
This is an excellent approximation for nonferromagnetic
media since the deviations of Il from Ilo arising from paramag­
netic effects are negligible. The current density J. is a source
current arising from the alternating current in the cable separ­
ating the A and B electrodes.

To solve Maxwell's equations (7)--{1O), it is convenient to
cast them in terms of a vector potential A and a scalar poten­
tial o, First, we introduce A by observing that since V . H = 0,

4rr (1 1 1 1 ) - 1

R. = 1 VMN• 1 AM - AN + BN - BM' (4)

where AM, AN, BN, and BM are the distances (in meters)
separating the electrodes. The above definition of R. is similar
to the definition in the conventional theory of unfocused point
electrode-type resistivity devices (Dakhnov, 1959). In the latter
case, the in-phase voltage component in equation (4) is re­
placed by the voltage amplitude (Vo). This difference is negligi­
ble for IP logging in shaly sands since, for the expected range
of measured phase arigles (i.e., less than 100 mradians), Vo and
VMN , 1 differ by less than 1 percent. The apparent phase angles
fl. in milliradians are defined by

v.e. = 1 000 tan-I MN,Q.

VMN• 1

A major aim of this paper is to demonstrate under what con­
ditions the true formation resistivities R, and IP parameters fl,
can be determined from R, and ea' We define the IP parame­
ter fl (in radians) by

and

B=j.lH,

D =E'E,

H = V x A.

(11)

(12)

OOEoK
fl=tan- I--,

a
(6)

To introduce <1>, substitute the equation (12) into equation (7)
and use the constitutive relation B = IloH. Thus

where K is an effective relative dielectric constant for the
medium, Eo = (367')-1 X 10- 9 F/m is the dielectric permit­
tivity of a vacuum, and (J is the effective conductivity of the
medium in units of S/m (Fuller and Ward, 1970). Note that (J

is simply the reciprocal of the resistivity R(Q· m). Therefore, if
R, and flt can be determined from the downhole tool response,
then the effective formation relative dielectric constant K, can
be determined from equation (6). Thus IP logging in shaly
sands can be viewed as a method for dielectric constant log­
ging at low frequencies (e.g., 32 Hz or less).

The argument of the arctangent in equation (6) is the ratio
of the quadrature and real parts of the complex conductivity
of the medium. IP parameters defined by equation (6) are
identical to the IP phase angles which Vinegar and Waxman
(1984) measured in their laboratory experiments on shaly sand
core samples. The ratio of the quadrature and real parts of the
complex conductivity in shaly sands is typically less than 0.03.
Therefore, an excellent approximation for the IP parameter of
a shaly sand is

which provides a relationship between the potentials. In equa­
tion (16), we have introduced the complex conductivity

and therefore the quantity in brackets can be written as the
negative gradient of a scalar potential. Thus, we arrive at a
familiar result

Note that in obtaining equation (14), we have taken time Fou­
rier transforms using the convention that any function of time
S(t) is related to its transform 8(00) via

(14)

(15)

(16)

(13)

V·A
l!> = ---* 'a

V x [E - iOOlloA] = 0,

E(ro) = - Vl!> + irollo A.

fOO dro - .
S(t) = - S(oo)e'Ol'.

- 00 21t

On substituting equations (12) and (14) into equation (8) and
using the constitutive relations in equation (11), after some
straightforward algebra, a coupled equation for A and <I> is
obtained. This equation can be decoupled by choosing the
gauge condition

(6a)
OOEoK

S~--.
a

where S = WE'/a is an IP parameter. On using the gauge con­
dition the vector potential obeys the inhomogeneous wave
equation

DYNAMIC MODEL OF ELECTRODE-TYPE
ELECTRICAL LOGGING TOOLS

Time-dependent Maxwell's equations,
potentials and gauge conditions

a* = a(1 - is), (17)

The starting point of our treatment of the dynamic response
of electrode-type electrical logging tools is Maxwell's equa­
tions in the frequency domain, which in mks units are

has been introduced and where 0 = (2/rollo a)I/2 is the classical
skin depth.

Equations (18) and (19) are general; in order to specify our
model, it is necessary to choose an appropriate source current

v x E = iroB,

V x H = -iroD + aE + J",

V· B=O,

V·D=Pt

(7)

(8)

(9)

(10)

where the complex propagation constant

k = (1 + i) (1 _ is)I/2,
o

(18)

(19)
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Theory of IP Logging in a Borehole 1835

Io(p)[u(z) - u(z - L)]ez (20)
Js(r) = - 2 '

1tp

where u(z)is a unit step function defined by the equation

density Js(r). For an electrode-type electrical logging tool such
as the one depicted in Figure 1, we choose Js(r) to be of the
form [in a cylindrical coordinate system (p, <1>, z) with origin at
the A electrode],

{
I,

u(z) =
0,

for z ~ 0

for z < O'
(21)

model equations for the following logging geometries: (1) an
infinitely thick, uninvaded bed penetrated by a borehole; and
(2) an infinitely thick, invaded bed penetrated by a borehole.

The detailed results of our calculations are too lengthy to
display here; however, it is useful to discuss them in general.
Our calculations result in a complex voltage V(p, z) (i.e., a
phasor voltage in electrical engineering terminology) from
which the in-phase (VMN. I) and quadrature (VMN• Q) voltage
components induced between the M and N electrodes can be
computed. These voltage components are obtained from the
equations

e, is a unit vector in the z direction, and L = AB is the dis­
tance separating the A and B electrodes. Also, note that the
current density vanishes everywhere except along the portion
of the insulated current cable which is between the A and B
electrodes. Moran and Gianzero (1979) discuss a similar
model in an investigation of the interplay of resistivity ani­
sotropy and finite frequency effects on the apparent re­
sistivities of electrical logging tools.

Definition of the forward problem
and a method for calculating apparent formation
resistivities and IP parameters

The model described permits calculation of the voltage
components VMN. I and VMN• Q (and therefore 9. and R.) for an
electrode-type logging tool operating at any frequency and for
any prescribed electrode-spacing and configuration. The EM
coupling effects contribute to 9. and can mask the small IP
response of the formation if they are not taken into account
properly. The EM coupling effects decrease with decreasing
frequency and also with decreasing electrode spacings AM
and AN. Therefore, it is possible to decrease the EM effects by
decreasing the electrode spacings; however, this decreases the
depth of investigation.

The values of 9. and R. determined from the solution of our
model depend not only on tool parameters (e.g., frequency,
electrode spacings, etc.), but also on borehole and formation
properties. For example, consider an infinitely thick bed pen­
etrated by a borehole and having an invaded zone of radius
rxo' The tool response, and hence 9. and R., in this zone
depends upon (1) the borehole radius (a), (2) the drilling-mud
resistivity (Rm) , (3) the invaded-zone radius (rxo), (4) the
invaded-zone resistivity (Rxo), (5) the invaded-zone IP parame­
ter (9xo), (6) the formation resistivity (R,), and (7) the formation
IP parameter (9,). In a more complex model for the formation
the tool response will, of course, depend upon more parame­
ters. Given any model for the formation and values for all of
the parameters which define the model, then, in principle, the
values of 9. and R. can be computed. We call this a solution
of the" forward problem" for the model.

The solution of the forward problem for a given model of
the formation involves solving the Maxwell's equations (just
discussed). These equations lead to mathematical boundary­
value problems which can be solved analytically for all of the
standard logging geometries normally considered in modeling
logging tool responses. For more complex geometries (e.g.,
invaded thin beds), our dynamic model equations can be
solved numerically using finite-element and/or finite-difference
methods. We do not consider these more complicated situ­
ations here. In Appendix A, we use Green's function and inte­
gral transform methods to obtain analytical solutions to our

and

VMN,Q = 1m [V(Po, ZM) - V(Po, ZN)], (23)

where Re and 1m are operators which take the real and imagi­
nary parts, respectively, of the complex quantities on which
they operate; P and z denote coordinates in a cylindrical coor­
dinate system [i.e., (p, <1>, z)] whose origin is at the A electrode.
The coordinate Po is the radial coordinate of the voltage mea­
suring cables; ZM = AM and ZN = AN are electrode spacings.
The bracketed terms in equations (22) and (23) are line inte­
grals of the electric field along a path connecting the M and N
electrodes, e.g.,

(24)

In Appendix A the boundary-value problem for our dynamic
model is solved for the two logging geometries considered. An
expression for V(Po, z) is derived [see equation (A-26)] which,
together with equations (A-22) and (A-40), represent our solu­
tions. These equations, together with equations (A-25a) and
A-25b), were used to calculate 9. and R. for the examples
presented here. In Appendix B, our dynamic model is solved
in an infinite homogeneous medium. The inductive EM cou­
pling terms obtained in Appendix B are shown to agree with
those obtained previously by Wait (1959) in computing the
transfer impedance between parallel wires in an infinite, ho­
mogeneous medium.

EM coupling contributions to apparent IP phase angles

The numerical results below illustrate the EM coupling con­
tributions to apparent IP phase angles for four-electrode
normal IP arrays.

The EM coupling contributions (i19) to the apparent IP
phase angles for an IP tool operating at a frequency fare
defined by

(25)

where 9. are apparent IP phase angles defined in equation (5)
and fo is a low frequency (i.e., essentially de) for which EM
coupling contributions are negligible. The numerical results
presented below were obtained usingfo = 2- 6(0.015 6) Hz.

We consider four-electrode normal arrays for which the B
electrode is located in the borehole. Calculations of i19 were
performed for several different IP arrays in a borehole pen­
etrating an infinitely thick non invaded formation. For these
situations, the tool responses were computed using equations
(A-25), (A-26), (4), and (5).

Our numerical results demonstrate the following.
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1836 Freedman and Vogiatzis

where we have introduced an "effective length" squared for a
four-electrode normal array which is defined by

Some insight into the scaling behavior of ~e can be ob­
tained by extracting the dominant contribution to ~e from the
K o term in equation (A-26). After some straightforward al­
gebra, we find that

(1) ~e has a negligible dependence on the formation
IP parameter (et) for the systems of interest for which
os et S; 30 mradians andf S; 32 Hz.

(2) The dominant contribution to ~e is from the term
in equation (A-26) which contains the modified Bessel
function Ko .

2 (J21tIlO fcrm )
~e ~ 21tLefcra 110 In 2 Po + ... , (26)

the scaling parameter is approximately universal. That is, for
fixed values of L; craf, we found only slight differences in ~e

for different values of f, RtlRm , electrode spacings, and bore­
hole size. Figure 2 displays approximate upper and lower
bounds on ~e obtained from the calculations. The closeness of
the bounds illustrates the approximately universal nature of
the scaling. The weak, nonuniversal dependences on R,IRm

and electrode spacings result from the other terms (i.e., the
terms not involving the modified Bessel function K o) in equa­
tion (A-26). These terms do not scale like L; cra f, because they
have a different z dependence (i.e., dependence on electrode
spacing) than the dominant K o term. Figures 3 through 5
display resistivity departure curves which were also generated
by the calculations described above. The latter results showed
that the apparent formation resistivities (Ra) have negligible
dependences onf and et • Figure 2 can be used to estimate the

(
1 1 1 1 )-1

L 2 = (AN -AM) ---+---
e AM AN BN BM

(27) 1000,-----------------_------,

100

500

50

500 1 00010 50 100
Rt/Am

10

x 30 em (12 inch) BOREHOLE DIAMETER
• 20 em (8 inch) BOREHOLE DIAMETER

FIG. 3. Resistivity departure curves for shallow tool.

E

~
cr

Note that if the B electrode were at infinity (e.g., in the mud
pit), then L; = (AM) (AN), as might be expected. In deriving
equation (26), we have used a well-known small-argument ex­
pansion for the modified Bessel function, i.e., K o(z*) = ( -1/2)
In (z*12)+ ... ,valid for z* --+ O.

In equation (26), c, and crm are the apparent formation and
drilling mud conductivities, respectively, and ~e is in radians.
All of the calculations were done using Po = 0.01 m for the
radial coordinate of the voltage-measuring electrodes. ~e is
negative [the negative sign comes from the logarithm in equa­
tion (26)J for the normal arrays considered here.

The form of ~e in equation (26) suggests that the EM cou­
pling contributions to apparent IP phase angles can be scaled
using the scaling parameter L; cra f Numerical calculations of
~e were performed as a function of L; oa f for (1) 8-inch and
12-inch borehole diameters, (2) resistivity ratios (RtIR m) in the
range from 1 to 60, and (3) for the three sets of electrode
spacings shown in Figure 2. We find the dependence of ~e on

1000,---------------------,
1000,-----------------------,

500
500

SPACINGS
TOOLS AM AN AS

SHALLOW 41 em 6.1 m 27 m
(16inches) (20 ft) (89 ft)

MEDIUM 163 em 22m 27 m
(64inches) (71ft) (89 ft)

DEEP 244 em 22m 27m
(96inches) (71ft) (89 ft)

100

500 1 00050 100
Rt/Rm

10

10

50

x 30 em (12 inch) BOREHOLE DIAMETER

• 20 em (8 inch) BOREHOLE DIAMETER

E

~
cr

5000 1000050 100 500 1 000

L e 2 08 f (m/H)

100

50

"ii
'Cs
E-
O>
<l,

10

FIG. 2. Approximate upper and lower bounds for EM cou­
pling contributions to apparent IP phase angles. FIG. 4. Resistivity departure curves for medium tool.
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Theory of IP Logging in a Borehole 1837

magnitude of the EM coupling contributions to M for differ­
ent tool designs. For example, if -~S must be less than ap­
proximately 10 mrad, then L; o, f< 100.This latter inequality
places obvious constraints on the tool frequencies and elec­
trode spacings for any anticipated range of apparent re­
sistivities.

Note that if L; amfhad been used as the scaling parameter,
then Figure 2 would have consisted of a family of curves for
AS corresponding to different values of Rt/Rm . Use of aa in­
stead of am in the definition of the scaling parameter results in
the almost total coalescence of this family of curves (Figure 2).

Note also that the findings reported here are valid only for
four-electrode normal arrays with the B electrode in the bore­
hole. The EM coupling effects for other arrays can be similarly
investigated and will generally have different characteristics
(e.g., see Nair and Sanyal, 1980).

Definition of the inverse problem and a method for obtaining
IP parameters, resistivities, and invasion radii from logging
data

To define and illustrate the "inverse problem" we consider
the simple model for invasion discussed earlier. That is, we
consider a borehole of known radius p = a is filled with a
drilling mud having known resistivity Rm and IP parameter
Sm = o. The annular region a ~ p ~ rxo is invaded by the
borehole fluid and has electrical properties Rxo and Sxo. The
region p > rxO is the uninvaded formation and has electrical
parameters R, and St. The response of an IP tool in this
borehole will, therefore, depend functionally on five unknown
parameters (i.e., Sxo, Rxo , St, R" and rxo). Thus at least five
independent measurements are required to determine these
parameters. Determining these parameters from the logging
data (i.e., measured voltages) involves the solution of an in­
verse problem. This inverse problem can be described as fol­
lows: Suppose that one is given five independent measure­
ments of the response of an IP tool. Furthermore, suppose we
have a method for calculating these responses for any set of
values of the five unknown parameters (this is the forward

1000'r---------------------,

500

x 30 em (12 inch) BOREHOLE DIAMETER

• 20 em (8 inch) BOREHOLE DIAMETER

100

50
E

~
It:

problem). It is then possible to devise a method (discussed
below) for determining values of the unknown parameters
such that the calculated responses are identical to the input
(i.e., measured) responses. If the set of parameters determined
is unique, then we have solved the inverse problem. In Figure
6, we display a schematic of an IP device having three sets of
electrode spacings (a set consists of electrode pairs AB, AM,
and AN). This device can measure three apparent resistivities
and three apparent IP parameters and can, therefore, provide
enough data to find a solution of the inverse problem.

We briefly describe our method for solving the inverse
problem discussed above. An example of this method for a
particular case is presented and discussed next. Let R~) denote
measured values of apparent resistivity where subscripts i = 1,
2, 3 refer to the particular set of electrode spacings for which
R~) is determined. Let R~i)(RI' R2 , b) denote the theoretically
computed values (i.e., solutions of the forward problem) of
apparent resistivities. We are using thefact that the theoreti­
cally computed apparent resistivities have a negligible depen­
dence on EM and IP effects for the devices and application
considered here. This leads to a "decoupling" of the resistivity
and IP inverse problems. That is, the inverse resistivity prob­
lem can be solved and the solution can then be used to solve
the inverse IP problem. The theoretically computed values for
fixed i depend functionally on the values assigned to (1) the
resistivity of the invaded zone (RI ), (2) the resistivity of the
formation zone (R2), and (3) the radius of the invaded zone (b).
In a more complex model, the computed values of apparent
resistivity will depend upon more parameters. Generalization
of this inverse method to more complex models is straightfor­
ward, however, an IP tool with more than three sets of elec­
trode spacings is required to obtain values of formation IP
parameters and resistivities.

It is convenient to introduce the deviations of the computed
values of the apparent resistivities from their corresponding
measured values. That is, we define the functions

fU)(Rj, R2 , b) == R~)(Rl' R2 , b) - R~), (28)

for i = 1, 2, 3. The solution of the inverse problem for the
present model involves determining values of the parameters
R I , R2 , and b such that the deviations F(i)(R u R2 , b) vanish.
The values thus determined are the values predicted by the
model for Rxo, Rt , and rxO. The method we use to obtain the
zeroes of equation (28) is a simple iterative scheme based on
the well-known Newton-Raphson method for solving systems
of nonlinear equations (Kunz, 1957). Application of this
method to equations (28) leads to a set of algebraic recursion
relations (for i = 1,2,3),

aF(i) aFul aF(i).
~Rn+1 - + ~Rn+1 - + ~bn+l - + f(') = 0 (29)

j aRj 2 aR2 ab '

FIG. 5. Resistivitydeparture curves for deep tool.

10

'0 50 100
Rt/Am

500 1 000

where ~R~+ 1 = R~+ 1 - R~, etc., and n = 0, 1,2, ... is an iter­
ation index. A procedure for obtaining initial values R\O), R~O),

and b(O) for the iteration scheme is discussed in the next sec­
tion. The functions F(i) and their partial derivatives in the
above equations are evaluated at R~, R'i, and b". Convergence
of the iteration occurs after M iterations provided that the
absolute values of the ratios ~R~/R~, ~R'f/R'f, and MM/bM

are all less than a prescribed error criterion. On convergence
of the scheme one automatically obtains the desired model
parameters, i.e., Rxo = R~, R, = R'f, and rxo = bM

. Note that
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1838 Freedman and Vogiatzis

at each step of the iteration process in equation (29) it is
necessary to compute F(i) and its derivatives. Therefore, to
solve the inverse problem one must have accurate and rapid
methods for solving the forward problem.

The next step in solving the inverse problem is determi­
nation of the IP parameters 8xo and 8t . Using a relationship
derived by Balabanian and Bickart (1969), the set of approxi­
mate equations

can be derived. In equation (30), the 9~i) are measured values
of apparent formation phase angles from which the EM cou­
pling contributions (d8) have been subtracted. The EM cou­
pling contributions to be subtracted from the measured appar­
ent phase angles are defined in equation (26) and are com­
puted as previously described. A derivation of equation (30) is
given in Appendix D, and the method is applied to the inverse
resistivity and IP problem for an infinitely thick, invaded for­
mation. The derivatives in equation (30) are evaluated at
R1 = Rxo , R2 = Rt , and b = rxo. Note that these same deriva­
tives are computed in the final iteration of equation (29) so
that the only unknowns in equation (30) are 8xo and 8t • Thus,
apparent phase angles e~i) (i.e., with EM coupling contri­
butions subtracted) from only two sets of electrode spacings
are required to determine 8xo and 8t • In the next section we
discuss an application of our inverse method. In the example
discussed, the formation is deeply invaded (i.e., the invaded­
zone radius is equal to six borehole radii) and the invaded­
zone parameters (8xo , Rxo) and formation parameters (8t , Rt)

are significantly different. This example represents a situation
where the effects of invasion on the tool response are severe,
so it is a good test of the validity of the method.

8 R ~F(i) 8 R aF(i)
eli) _~ _0_ + _t_t __

a - Rli) ~R R(i) aR
a 0 1 a 2

(30)

PREDICTIONS AND RESULTS
FROM THEORETICAL MODELS

Departure curves for an infinitely thick noninvaded bed
penetrated by a borehole

Figure 7 displays a graphical relationship between 8a and
Ra and the formation parameters 8t and R t . These curves were
obtained by using equations (A-22) and (A-26) to calculate
values of 8a and R, for different values of 8t and R t . These
curves represent a graphical solution of the inverse problem
for an infinitely thick, noninvaded bed penetrated by a bore­
hole since, with them, 8t and R, can be obtained from values of
8a and Ra • The departure curves depicted are valid for an IP
tool in an 8 inch borehole filled with a relatively high­
resistivity mud having Rm = 1 n· m. Note that 8m = 0 since
most drilling fluids do not exhibit IP effects. The departure
curves in Figure 7 demonstrate that significant borehole ef­
fects must be correctly accounted for to determine R, and 8t

from the apparent values 8a and Ra determined from the tool
response. For example, if the tool records values R; = 80 n· m
and 8a = 20 mradians, then from the departure curves R, =

100 n· m and 8t = 30 mradians. The departure curves also
illustrate the effects of frequency on the response of an IP tool.
At two frequencies considered in Figure 7, 1 Hz and 10 Hz, for
the electrode spacings and borehole conditions considered, the
frequency effects are most important for the lower values of
formation resistivity. Observe also that for small values of 8t

the apparent values 8a can be negative at higher frequencies.
The departure curves in Figure 7 are valid for an IP tool
whose electrode spacings and configurations are identical to
the standard 16-inch (41 cm) normal tool used in resistivity
logging. Similar departure curves can easily be constructed for
any set of electrode spacings and for any borehole size and
mud resistivity.

IT APPARENT PHASE
AND APPARENT
RES ISTlVlTV
CALCULATOR

B

W
...J
o
I
w
a:
o
en

A

MUD
Am

/

NON-INVADED
FORMATION

Rt·9 t

FIG. 6. A schematic of IP device with three sets of electrode
spacings.
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Theory of IP Logging In a Borehole 1839
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FIG. 8. A pseudodeparture curve for the effects of invasion on
the response of an IP device with electrode spacings identical
to those of a 64-inch (163 ern) normal tool.
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Pseudodeparture curves for an infinitely thick invaded bed
penetrated by a borehole

500 r----------------------,

The usefulness of departure curves of the type discussed
above is lessened when the formation is invaded by mud fil­
trate, because of the proliferation of unknown parameters
which occurs whenever the formation is invaded. To illustrate
this point, consider a simple model for the invasion. A bore­
hole of known radius p = a is assumed to be filled with a
drilling mud with known resistivity R m and IP parameter
8m ~ O. The annular region a ~ p ~ rxo is invaded by the
borehole fluid and has electrical parameters Rxo and 8xo . The
tool response in this borehole will, therefore, depend upon five
unknown parameters (i.e., 8xo, Rxo, 8" R" and r,o)' There are
clearly too many variables to display graphically. Nevertheless
constructing "pseudodeparture curves" lends some light on
the invasion problem. That is, suppose the properties of the
invaded zone (i.e., values of R,o, 0xo, and rxo) are given. For
fixed values of the invaded-zone properties we can construct,
using equations (A-26), (A-40), and (A-41), pseudodeparture
curves such as those in Figures 8 and 9. Figure 8 shows
coupling-free (i.e., zero-frequency) pseudodeparture curves il­
lustrating the effects of invasion on the response of an IP
device having electrode spacings identical to the standard M­
inch normal tool. Note that EM coupling effects (dashed
curve) can be quite large at these relatively long electrode
spacings. Figure 9 depicts a pseudodeparture curve for the
same situation shown in Figure 8, except that the electrode
spacings are those of the l6-inch (41 em) normal tool. A com­
parison of Figures 8 and 9 shows that the response of the
longer-spaced tool is much more sensitive to the formation
properties (i.e., 0, and R,). Indeed, if the radius of the invaded
zone in Figure 9 is increased from two to six borehole radii,
then the 16-inch normal response becomes essentially insen­
sitive to the properties of the formation. The sensitivity of the
longer-spaced tool (i.e., M-inch normal) is reduced when the

FIG. 7. A borehole departure curve for an IP device whose
electrode spacings and configuration are identical to those of a
16-inch (41 ern) normal tool.

FIG. 9. A pseudodeparture curve for the effects of invasion on
the response of an IP device with electrode spacings identical
to those of a 16-inch (41 em) normal tool.
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1840 Freedman and Voglatzla

table 1. Application of the inverse method to a deeply invaded
formation.

• = 0.102 m (BOREHOLE RADIUS)

Rm = a-m (MUD RESISTIVITY)

ELECTRODE SPACINGS (ml AND APPARENT VALUES

AM AN AB· R (I) -Ii)

• 8a

0.406 6.10 12.75 3.67

1.62 21.64 122.77 6.80

6.10 21.64 415.46 8.34

STEP 1: DETERMINATION OF Rxo• Rt AND 'xo

n Rl(n) R2(n) bin)

12.747 415.461 0.305

9288 414.957 0.341

2 6.921 426.257 0.379

3 5.342 450.149 0.418

4 4.250 486.582 0.456

5 3.557 541.478 0.493

6 3.020 602.848 0.523

7 2.693 669.789 0.546

8 2.374 736.378 0.598

9 2.193 796.629 0.581

10 2.072 846.303 0.590

11 1.993 883.928 0.596

12 1.972 918.875 0.601

13 1.968 945.351 0.604

14 1.971 964.378 0.606

15 1.977 977.450 0.607

16 1.983 986.103 0.608

17 1.988 991.644 0.609

18 1.992 995.091 0.609

19 1.995 997.1110 0.609

21 1.998 999.129 0.610

22 1.999 999.532 0.610

23 1.999 999.754 0.610

24 2.000 999.873 0.610

25 2.000 999.937 0.610

·B-ELECTRObE IN THE MUD PIT.

STEP 2: DETERMINATION OF 8xo AND 8t

ELECtRODE SPACINGS 8xo 81

-(1) -(2)
10.06 31.110a • 8a

-(1) -(3)
10.06 31.090a • 0a

-(2) -(3)
10.33 31.118•• 0.

radius of the invaded zone is increased to six borehole radii;
however, there is still good sensitivity to the formation proper­
ties. This suggests that at least two of the sets of electrode
spacings on the device in Figure 6 should be chosen to pro­
vide a greater depth of investigation than the 16-inch normal
spacing.

Application of the inverse method to a deeply
invaded formation

This example demonstrates the accuracy and efficiency of
the inverse procedure for obtaining values of R..,o, 0..,0' R" Oro
and r..,o from the apparent resistivities and IP parameters ob­
tained from a tool such as the one in Figure 6. Consider a tool
with three sets of electrode spacings identical to those of stan­
dard 16-inch (41 em), 64-inch (163 em) and 20-ft (6.1 m)
normal devices. Moreover, consider this tool situated in a
borehole of radius a = 0.102 m which penetrates an infinitely
thick invaded bed with invaded zone radius r..,o = 0.610 m. In
this example we consider invaded-zone properties R..,o = 2
n.m, 9",0 = 10 mradians, and formation properties R,=
1 000 n·m and a, = 30 mradians. The deep invasion (i.e., six­
borehole radii) and the large contrast in invaded-zone and
formation properties make this example a formidable test case
for our inverse method. The apparent values of resistivity R~i)

and 9~) obtained by measurements with the three sets of elec­
trode spacings are listed in Table 1. Note that i = I, 2, 3
denotes, respectively, the 16-inch (41 em), 64-inch (163 em),
and 20-ft (6.1 m) normal spacings. Table 1 shows that the
apparent values of resistivities and IP parameters are very
different from the actual or true values. To determine true
values from the apparent values, we use the two-step pro­
cedure discussed in the preceding section. First, we solve the
set of iterative equations (28). Initial values for the iteration
procedure are obtained as follows. The initial value of the
invaded zone resistivity is set equal to the apparent resistivity
from the 16-inch (41 ern) normal, i.e., R\O) = R~I>, and the initi­
tial value of the formation resistivity is set equal to the appar­
ent resistivity from the 20-ft (6.1 m) normal, i.e., RiO) = R~3).

The initial value of the invaded-zone radius is set equal to
three borehole radii, i.e., b(O) = 3a. Table 1 lists the values of
R\N), R~), and b(N) obtained at each step of the iteration. Note
that after 25 iterations we have obtained values of R..,o, R"
and r..,o accurate to within one-tenth of 1 percent.

This computation required 4.5 minutes on a UNIY AC 1108.
Note that each step of the iteration required four solutions of
the forward problem. Thus, in this example we solved the
forward problem 100 times, supporting our assertion that ac­
curate and rapid solutions of the forward problem are essen­
tial to solution of the inverse problem. The next step is to
utilize the values obtained for Rxo , R" and rxO to obtain true
IP parameters 9xo and a, from the measured apparent values
9~) (from which EM coupling contributions have been sub­
tracted). This is simple and merely involves solution of any
pair of the set of three algebraic equations (30). Table 1 dis­
plays results obtained by using all three pairs of equations to
determine oxo and 9,. In practice any inconsistencies between
solutions arrived at by using different pairs would be warnings
that either the model is inadequate (e.g., thin beds or other
effects might be important) or that the logging data are poor.
Note that the values of 9xo and 9, obtained using different
pairs of spacings are in good agreement.
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Theory of IP Logging In a Borehole 1841

Comparison of a nonlinear relationship between percent
frequency effect and IP phase angle with laboratory data

As noted in Appendix C, the constant of proportionality
(0.1466) is in excellent agreement with the experimental results
of Vinegar and Waxman (1984) on 20 shaly sandstone samples
saturated with brine. Table 2 compares the predictions of the

In Appendix C a nonlinear relationship between percent
frequency effect (PFE) and IP phase angle is derived. The PFE
is simply the percent change in resistivity per decade change in
frequency. The PFE and phase angle are the two most com­
monly used parameters to characterize IP phenomena. Pre­
vious workers on the IP effect have frequently utilized linear
relationships between the IP phase angle and PFE.

Appendix C demonstrates that a linear relationship is valid
only in the regime of small phase angles, or more precisely,
when 2e/n In lO« 1, where e is in radians and is evaluated at
the geometric mean (JOO1002) of the two frequencies of in­
terest. This inequality is satisfied for shaly sandstones where
true formation IP phase angles are not expected to exceed
approximately 30 mradians (Vinegar and Waxman, 1984). In
the mining industry where the IP effect is widely used to iden­
tify rock strata containing metallic minerals, this inequality is
violated. In this case phase angles of hundreds of miIliradians
are frequently of interest. The nonlinear relationship derived
in Appendix C is

PFE = lOo[exp (~ In ::) - 1]' (31)

In the limit of small phase angles we can expand the ex­
ponential in the above equation and obtain

PFE ~ 0.146 so (e in miIliradians). (32)

nonlinear (NL) relationship with experimental data obtained
by Zonge et al. (1972). They measured both the frequency
effect FE (PFE/l00) and the phase angle on a suite of mineral­
ized rocks composed of a variety of mineral types and con­
centrations of conductive materials. The frequency measure­
ments were performed at 0.1 and 1.0 Hz. Table 2 lists the
measured FE and phase angle e in columns 2 and 3, respec­
tively. In column 4 we have computed, using the measured
phase angles, the FE predicted using a theoretical relationship
(FE = 1.8e) derived by Zonge et al. This relationship is dis­
cussed in Appendix C. The fifth column of Table 2 lists the FE
predicted by equation (31) using the measured phase angles. It
is clear that the NL relationship derived in Appendix C is in
better agreement with Zonge et al.'s data than is the linear
relationship they derived. Indeed only for sample MOR-4
does the FE predicted by the Zonge et al. relationship agree
better with the measured FE than does the NL relationship.

SUMMARY AND CONCLUSIONS

A dynamic (i.e., time-dependent) model of unfocused
electrode-type electrical logging devices has been proposed to
study resistivity and IP logging in a borehole. The model has
been applied to study the frequency-domain responses of four­
electrode normal type devices in shaly sand formations. The
dynamic model self-consistently accounts for inductive EM
coupling effects on apparent IP phase angles (e.). The EM
coupling effects on e. have been studied in detail for four­
electrode normal arrays and are shown to have an approxi­
mately universal dependence on a scaling parameter L; (J. [.

Determination of true formation resistivities and IP param­
eters from apparent values requires solution of an inverse

Table 2. Comparison of the nonlinear (NL) relationship with laboratory data and theory of Zonge et al. (1972).

SAMPLE" FE(O.l, 1.0) 0*(0.316 Hz) FE = 1.80 FE (NL)

TB-15-1 0.0023 0.0019 0.0034 0.0028

Y-4125-A 0.018 0.012 0.022 0.018

MOR-l 0.054 0.035 0.063 0.053

MINN-l 0.057 0.036 0.065 0.054

TB-24-40 0.077 0.048 0.086 0.073

MOR-2 0.097 0.061 0.110 0.094

MOR-4 0.190 0.110 0.200 0.170

MOR-3 0.360 0.210 0.380 0.360

AN-810A 0.410 0.240 0.40 0.420

MIN-2 0.680 0.350 0.630 0.670

'SAMPLES ARE DESCRIBED IN TABLE 1 OF ZONGE et al. (1972).

*0 IS IN RADIANS.
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1842 Freedman and Voglatzls

problem. A new two-step method which permits accurate and
rapid solution of the inverse problem for the dynamic model
has been proposed. As an example of the method, we demon­
strated how values of Rx o , R" ex o , e" and rxO can be deter­
mined from logging data acquired in a deeply invaded forma­
tion.

The two most widely used IP parameters are phase angle (e)
and percent frequency effect (PFE). We demonstrated that a
linear relationship between these two parameters is, in general,
not valid. We derived a nonlinear relationship which is in
good agreement with published experimental data over the
whole range of physical interest.

Note added in proof.-After this work was completed, H. J.
Vinegar brought to our attention the work of Van Voorhis et
al. (1973). They presented a different derivation of the nonlin­
ear relationship developed here.
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APPENDIX A

SOLUTION OF THE FORWARD PROBLEM

(A-3)

This appendix solves our dynamic model equations for
electrode-type electrical logging devices in the two logging
geometries considered in this report. As discussed, these solu­
tions are used to calculate apparent resistivities (R.) and phase
angles (e.) for the theoretical tool response.

Infinitely thick noninvaded bed penetrated by a borehole

The model equations solved here were discussed in the text.
Recall that the vector potential A obeys the inhomogeneous
wave equation

where the source current density Js(r) is given by

18(p)[u(z) - u(z - L)]ez (A-2)
Js(r) = - 2 '

1tp

where all quantities in equations (A-I) and (A-2) have been
defined previously. The vector potential is a vector of the form
A = (0, 0, A) because the source current density is in the z
direction. If Al denotes the solution of the above equations in
the borehole, then Al obeys the equation

2 2 18(p)[u(z) - u(z - L)]
V' Al + klA I = -'---"'------­

21tp

(A-I)
valid for p S; a. If A 2 denotes the solution outside of the bore­
hole, then A 2 obeys the equation
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Theory of IP Logging In a Borehole 1843

and

(A-I7)

(A-I8)

(A-I6)

e
ik l R

2 IX- == - dA KO(YIP) cos y(z - z')
R n 0

which can be proven using the theory of integral transforms. It
equation (A-I8) is substituted into equation (A-I5) and recall
equation (A-16), then after some algebra, the boundary con­
dition in equation (A-l3) leads to the equation

r-AI(p, z) = Jo dz' G(p, Z - z'),

valid for t = 1, 2. This simplifies the problem because the
inhomogeneous equation (A-II) satisfied by G1 is easier to
solve than the inhomogeneous equation (A-3) satisfied by A I'

Furthermore, the functions AI defined in equation (A-I7) will
automatically satisfy the proper boundary conditions.

The next step in the calculation of the functions A( is to
solve for the functions B(A)and C(A). It is convenient to intro­
duce the mathematical identity

where Ko is a zeroth-order modified Bessel function of the
second kind and Y2 = JA2 - k~. The functions B(A) and C(A)
are chosen so that the boundary conditions at p = a are satis­
fied.

The rationale for introducing the Green's functions G(p,
z - c') is that the vector potentials AI(p, z) can be expressed in
terms of the functions GI by the integral

written in the form (valid for p :::;; a)

_le
ik , R IX

G1 = --+ dA B(A)lo(YIP) cos A(Z - z'), (A-I5)
4nR 0

where the first term is a solution of the inhomogeneous differ­
ential equation and the second term satisfies the homogeneous
equation. The function lois a zeroth-order modified Bessel
function of the first kind, and Y1 = JA2 - ki and R =
J p2 + (z - Z')2. A solution of equation (A-I2) which is regu­
lar at p = c:JJ can be written in the form (valid for p z a)

G2 = 1'''o. C(A)Ko(Y2 p) cos A(Z - z'),

(A-8)

(A-7)

(A-9)

(A-5)

(A-4)

(A-lO)

(A-6a)

(A-6b)

k = (1 + i) (1 _ '0 )1/2
I 01 I I ,

oAI
H(q,=-,op

where at = al - iffiE~ for t = I, 2. If equations (A-7) and (A-8)
are combined, then the boundary conditions at p = a are
equivalent to the conditions

and

H1q, = H 2+

at p = a. From equations (12), (14), and (16),

and

where 01 = (2/ffilloa/)I/2 and 01 = ffiE~/a( are the classical skin
depth and IP parameter, respectively, of the medium. To solve
equations (A-3) and (A-4), specify the correct boundary con­
ditions at p = a. The boundary conditions on the vector po­
tential are obtained from the requirement that the tangential
components of E and H be continuous at p = a. That is,
impose the conditions

for P z a. In equations (A-3) and (A-4), k(for t = 1, 2) de­
notes the complex propagation constant of the tth medium
defined by

Green's functions

To solve equations (A-3) and (A-4) subject to the boundary
conditions given in equations (A-9) and (A-lO), it is convenient
to introduce Green's functions G(p, z - z') for t = 1, 2. The
Green's functions satisfy the equations

Similarly, the boundary condition in equation (A-I4) leads to
the equation

<72G k2G _ 18(p)8(z - z')
v 1 + I 1 - 2 '7tp

(A-II)

where II and Klare first-order modified Bessel functions of
the first and second kinds, respectively. In arriving at equation
(A-20), we have used the well-known relations

for p :::;; a and

(A-12)

for p z a. We seek solutions of equations (A-II) and (A-12)
subject to the boundary conditions

(~ o}~ + iffilloG1) = (~ a:~2 + iffilloG2) , (A-l3)
a l cz p=. a2 l'~ p=. and

dlo(z) = I (z)
dz I'

(A-2Ia)

(A-I4)

and

(a~1~. = ej)~2)p=.
A solution of equation (A-II) which is regular at p = 0 can be

(A-2Ib)

where z is a complex argument. The functions B(A) and C(A)
are solutions of the algebraic equations (A-19) and (A-20). We
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1844 Freedman and Voglatzls

and

S=Jp~+Z2,

and where £2 is the exponential integral defined for complex
argument z* by

are interested in calculating the voltage components (i.e., VMN , /

and VMN• Q) induced between the M and N electrodes. There­
fore, we are interested in the solution of A ,(p, z) which in­
volves the function B(A).

To save space we do not give our result for C(A), since we
do not explicitly use A 2 (p, z). On solving the simultaneous
equations (A-19) and (A-20) for B(A), I

X> dt e-;*'
£2(Z*) = --2-'

I t
(A-27)

for Re z* > O. The third and fourth terms in equation (A-26)
represent dynamic contributions to V(po, z) arising from EM
effects. Note that these terms vanish in the limit of zero fre­
quency and therefore are not present in the static potential
theory of electrode type resistivity devices (Dakhnov, 1959).
On taking the limit ())---> 0 and setting 0t = 0 (for t = 1, 2),
equation (A-26) reduces (as expected) to the result the static
potential theory would produce.

The dependence of V(Po, z) on the formation IP parameter
O2 is contained in the second term [i.e., in the function B(A) of
equation (A-26)l. The term contains the IP effect of the forma­
tion. The EM coupling effects on the apparent phase angles O.
are dominated by the K o term in equation (A-26). The terms
in equation (A-26), except for the integral, are identical to the
terms for a homogeneous medium having the electrical
properties of the drilling mud [e.g., see equation (B-14)]. The
EM contributions to 0. are calculated as described in the text.
That is, the EM contribution is a function of frequency J and
is defined by

(A-22)

On combining equations (A-15) and (A-17), we find that A, (p,
z) can be written in the form

- I (L dz' eik l R

A,(p, z) = 47t Jo --R-

(00 o.
+ Jo T B(A)Io(YIP)[sin AZ - sin A(Z - L)],

(A-23)

with B(A) given by equation (A-22). The complex voltage VMN

induced in the cable connecting the M and N measuring elec­
trodes is given by the line integral M = O.u) - O.uo), (A-28)

where the integration is along a line p = Po where Po is the
radial coordinate of the measuring cables and ZM = AM and
ZN = AN are electrode spacings. The real and imaginary com­
ponents of VMN are the in-phase (VMN , /) and quadrature
(V"'N. Q) induced voltage components, respectively. That is,

where ,10 is the EM effect at frequency J and Jo is a low
frequency for which EM effects are negligible. In our numeri­
cal computations of ,18, we used a valuefo = r 6 (0.0156) Hz.
As noted, we verified numerically that the EM effects are inde­
pendent of the formation IP parameters for the range of in­
terest in shaly sands (i.e., less than 30 mradians).

Infinitely thick invaded bed penetrated by a borehole

where the complex voltage V(po, z) is obtained from per­
forming the indefinite integral in equation (A-24). Calculation
of V(po, z) is straightforward, although somewhat tedious.
With the aid of equations (A-23) and (A-24),

I lex o.+.. ,2 Yi(A)B(A)Io(Y,Po)
0'1 0 1\

X [cos AZ - cos A(z - L)J

Ik 2z
- _1_ K (- ik P )

2 * 0 I 01ta l (A-31)

(A-30)

(A-29)18(p) [ ]V2A
1 + kiA 1 = 21tp u(z) - u(z - L) ,

for a :s; p :s; b, and

Here we solve our model equations for a simple three­
region model in which the annular region a :s; p :s; b is invad­
ed by borehole fluids. Here b is the radius of the invaded zone,
and region p > b represents the uninvaded formation. The
calculation of V(po, z) for this situation follows the same pat­
tern as the calculation for an infinitely thick noninvaded bed;
therefore, some of the details are omitted.

The vector potentials AI (for t = 1, 2, 3) in the three regions
of interest obey the equations

for p:S; a,

(A-25a)

(A-25b)

VMN. / = Re (VMN) = Re [V(po, ZN) - V(po, ZM)]

VMN. Q = 1m (VMN) = 1m [V(po, ZN) - V(po, ZM)]

where

for p ;::: b. The boundary conditions on the functions AI are
obtained from equations (A-7) and (A-8), together with the
conditions on the EM field vectors, i.e.,

at p = a, (A-32a)
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Theory of IP Logging In 8 Borehole 1845

HI. = H2+. at P = a, (A-32b)

E2% = E3%. at P = b, (A-32c)

and

H2+= H3+. at P = b.
(A-32d)

The next step in the solution of the equations (A-29HA-31) we
introduce the Green's functions G,(p, z - z') defined by the
equations,

where

Ht(A) = K t(Y2 a)Ft(A) + I 1(Y2 a)F2(A),

H2(A) = KO(Y2a)F1(A) - IO(Y2 a)F2(A),

with

(A-40)

(A-4la)

(A-4lb)

(A-33) (A-4lc)

for 0 :s; P :s; a, and

(A-34)

for a :s; P :s; b, and
(A-41d)

(A-35) Substituting B(A) into equation (A-26) yields the complex volt­
age V(Po, z) appropriate to the invasion model discussed here.

(A-36)

(A-38)

B electrode in the mud pit

(A-45)

(A-43)

[" sin AZ
Jo dz' cos A(z - z'] = -1..- + 7tO(A),

for Po« z, where E t is an exponential integral of complex
argument defined by equation (B-6). Consider the second
term, denoted for convenience by T2 . Interchanging the order
of integration results in the equation

T2 = 1ccdA B(A)Io(YIP) 1ccdZ' cos A(z - z'). (A-44)

The integral over the variable z' is elementary and leads to the
result

Here we modify the results of the preceding two subsections
to account for the frequent situation where the B electrode is
placed in the mud pit. For practical purposes, we are interest­
ed in the limit L~ 00 in the results for V(po, z). From equa­
tions (A-15)and (A-17),

- I r"" dz' eik l R

At(p, z) = 47t Jo --R-

+ IX)dz' f'dA B(A)Io(yI p) cos A(z - z'), (A-42)

for L~ 00. In Appendix B it is shown that the first term in the
above equation can be written in the form

icc dz' eik l R .
--- = 2K o( -iklpo) - E t(-ik1z),

o R

(A-37)

for a :s; P :s; b,and

(A-39a)

YtI.(Yta)B + Y{K 1(Y2 a)C - I t(Y2 a)DJ = ~~ YtKt(Yta),

(A-39b)

for P ~ b. The solutions of equations (A-33HA-35) can be
written in the form

_le
ik , R i""Gt = --+ dA B(A)lo(Ylp) cos A(z - z'),

47tR 0

for 0 s P s a,

G3 = 1""o: E(A)Ko(Y3 p) cos A(Z - z'),

for P ~ b. The functions B(A), C(A), D(A), and E(A) are deter­
mined from the boundary conditions imposed on the functions
G, at p = a and p = b. These boundary conditions are identi­
cal to those in equations (A-13)and (A-14). Imposing the con­
ditions on equations (A-36HA-38) leads to four algebraic
equations for the unknown functions:

r"" o: 7tB(O)+ Jo T B(A)I(ytPo) sin Az +-2- Io(-iklpo),

(A-46)

where 0(1..) is the Dirac delta function. Combining the results
of equations (A-44)and (A-45)yields(A-39c)

(A-39d)Y2[K t(Y2 b)C - I t(Y2 b)DJ - Y3Kt(Y3 b)E = O.

As discussed, our solution for V(po, z) only involves the un­
known function 11(1..). on soivmg me above equation for B(A),

y~[KO(Y2b)C + IO(Y2b)DJ - :; y~KO(Y3b)E= 0,

and
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1846 Freedman and Voglatzis

where B(O) is B(A) evaluated at A = O. Recall that V(Po, z) is
defined by the indefinite integral

(A-47)

(A-48)

f% I 8A
V(Po, z) = dz' E\:(po, z') ~ __I

a! j}z

+ iffil!o f dz' AI(po, z'),

by using equation (A-24). On substituting equation (A-46) into
equation (A-47), after some algebra,

I i'" o: y
2

+ * ~ B(A)lo(YIPo) cos AZ
a I 0 '"

lkiz ikll
---K (-ik P )---E (-ik z)

27m! 0 I 0 4lta! 2 I

ltkiz [ ]+ 2a! B(O)lo YI (O)po .

APPENDIX 8

SOLUTION OF THE DYNAMIC MODEL
IN AN INFINITE HOMOGENEOUS MEDIUM

Derivation of complex voltage

Appendix A focused on the solution of the boundary-value
problems associated with solutions of the dynamic model
equations in the two logging geometries considered. The
origin and derivation of the dynamic coupling contributions
to the measured voltages were perhaps somewhat obscured by
the details associated with the boundary-value problems. To
gain insight and avoid these complications, we solve the dy­
namic model equations in an infinite homogeneous medium
and compare the results with previous work (Wait, 1959).

The z-component of the vector potential obeys the equation

v2 A + k2 A = -Js(r), (B-1)

is valid since the coupling effects are dominated by the con­
ductivity of the medium for systems of interest here. The first
integral in equation (B-4) can be expressed in terms of a
zeroth-order modified Bessel function. The second and third
integrals can be simplified in cases for which z » p and L
- z » p. In these cases u can be replaced by A in the integrals,

and A. = A(ojz) and A. = Aoj(L - z) in the second and third
integrals, respectively. This results in the equation

A(p, z) = ~: {2K o( - ikP)-E 1(--ikZ)-E I [ -ik(L-Z)]},

(B-5)

where the exponential integral functions EI are defined by

Ir - r' I = J p2 - p'2 - 2pp' cos (<I> - <1>') + (z - z')2.

Combining equations (B-1) and (B-2) and using equation (A-2)
results in

where the source current density is given in equation (A-2).
The solution of equation (B-1) in an infinite homogeneous
medium has the form

(B-6)

(B-8)

VMN = I~dl . E(po, z) == I"dt. (- V<J> + iffil!o A), (B-7)

where df = e, dz and p = Po. On performing the integral for
the term involving the scalar potential,

1
'" de e-'·*'

E.(z*) = --.-,
1 t

valid for n = (0, I, 2, 3 ...) with z* a complex argument such
that Re z* > O.

To calculate the induced voltage VMN between the mea­
suring electrodes the line integral must be computed:

The scalar potential can be obtained from the gauge condition

(B-2)

(B-3)

fd3r' exp (ik Ir - r' n ')
A(r) = - Js(r ,

4lt Ir - r']

where in cylirtdrical coordinates (p, <1>, z),

. j -I iL dz' exp [ikJP2 + (z - Z')2]
A(Pi z,=- .

4lt 0 N+ (z - Z')2

From the chap;e of variables A = (z' - z)jo, the above integral
can be written In the form

(B-4) Using the above equation and equation (B-3), it is easy to
demonstrate that

<J> = If\{ ) __1_ [exp (ik~)
M-"",PO,ZM - ~

47t(J v p~ + z~

-l[ i"'dAe (I-i)u l"'dAe-(l-i)U
A(p, z) = - 2 -

4lt 0 U ./0 U

i: .)/. dA e~(l iII
where u= J,,2 + (pjO)2. In equation (B-4) we have assumed
k == (I + i)jo, where 0 =-= (2jffil!oa)I/2 is the classical skin depth;
This implies that the IP parameter of the medium is zero, and

i
<J> = - - V· A.

a
(B-9)D
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Theory of IP Logging In a Borehole 1847

(B-1O)
_ exp (ikJP6 + (L - z"l )J

JP6 + (L - ZM)2 '

and similarly for <1>N' Consider the integral in equation (B-8),
i.e.,

l
ZN

dz A(po, z)
ZM

counted for in quantitative IP logging of shaly sand petroleum
reservoirs to get an acceptable degree of accuracy. Wait (1959)
gives expressions [Wait's equations (40H42), p. 40J for the
transfer impedance Z = VII, between parallel current and volt­
age cables in a homogeneous medium. It can be shown that
VMNII in equation (B-14) is identical to the result from Wait's
expressions by making the following substitutions: p = Po,
C 1 = 0, C2 = L, PI = ZM' P2 = ZN, and y = -ik and then
performing the indicated integrations.

EM contribution to appareet resistivity

(B- \ 1)

valid for n = (1, 2, ...). Thus the exponential integral functions
in the integrand of equation (B-ll) can be written in the form

dE
E 1( -ikz) = (ik)-I _2 (-ikz),

dz

(B-17)

(B-18)

Z*2£2 (z*) = z*(ln z* + y - 1)+ I - 2 + .. "

where y = 0.577 215 664 9 is Euler's constant. The expansions
in equations (B-16) and (B-17), together with equations (B-14)
and (B-15), yield, after some algebra,

where R; (0) is the apparent resistivity at zero frequency. Note
that here Ra(O) = R = cr- I

, the true resistivity of the medium,
because we are considering an infinite homogeneous medium.
The "skin effect" (i.e., EM effect) contribution is given by the
second term in parentheses in the equation. Note that this
contribution is directly proportional to the frequency. For
electrode-type resistivity tools with long electrode spacings,
the EM contributions can become very large. These effects can
be minimized by operating the tools at very low frequencies.
The ULSEL tools (Runge et al., 1969) are operated at 0.05 Hz
to minimize the EM effects. Moran and qianzero (1979) have
given a formula similar to equation (B-18); however, our result
differs from theirs in the sign of the skin-effect correction. This
discrepancy can be traced to a sign error in the exponential
functions in their equation (38).

From equation (B-14) expressions for the apparent resistivi­
ty of the medium, including EM contributions can be ob­
tained. We derive here a simple expression val!d in the limit
ZN « 8,.ZM « 8, and L --> c:p' (e.~:, !3 electrode in the mud pit).
The apparent resistivity is given by

Ra(oo) = ~ (...!.- - ~)-I VMN I (B-15)
I ZM ZN •

where the frequency dependence of Ra(oo) is explicitly indicat­
ed. The small-argument expansions of the functions K o and
£2 are needed in equation (B-14). The first few terms of these
expansions for the complex argument z* are (Abramowitz and
Stegun, 1964),

Ko(z*) = _ (In Z; + y)(1 + Z:2 + ... ) + Z:2 + ... , (B-16)

and

(B-12)

(B-13a)and

To perform the integral in equation (B-11), use a recurrence
relation obeyed by the exponential integral functions of com­
plex argument z* (Erdelyi, 1954):

dE.(z*)
----;[;* = - E._.(z*),

EI [ -ik(L - z)J = -(ik)-I dE 2 [-ik(L - z)J,
dz .

On substitution of the values from equation (B-13a) into equa­
tion (B-11), the integrals are elementary and

VMN = <1>101 - <1>N - 4~cr (2k
2
( ZN - zM)Ko(- ikpo)

+ ik{E2(-ikZN) - E2(-ikzM )

-E2 [-ik(L - ZN)J + E2 [-ik(L - ZM)J}), (B-l~)

from equation (B-8). The scalar potential terms <1>101 and <1>N are
defined by equation (8-tO). The scalar potential terms reduce
in the limit of zero frequency to the same result (for an infinite
homogeneous medium) as in the conventional static potential
theory of resistivity logging. The terms in parentheses in equa­
tion (8-14) represent the EM coupling between the current
and measuring electrode cables: these terms vanish in the limit
of zero frequency, and therefore they represent "primary" dy­
namic contributions to the measured voltages. These contri­
butions arise from the time derivative of the vector potential
and therefore have no opportunity to appear in a static
theory. The quadrature voltages (i.e., VMN•Q = 1m VMN), and
therefore the apparent phase angles (Ba), contain EM coupling
effects which can mimic the IP response of earth formations.
As noted previously, these contributions must be properly ac-D
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1848 Freedman and Voglalzla

APlIENDlX C

DERIVATION OF A NONLINEAR RELATIONSHIP BETWEE~ IP PHASE ANGLE
AND PERCENT fREQUENCY EFFECT

(C-1)

Nonlinear relationship

In this appendix we derive an approximate relationship be­
tween the two most commonly used IP parameters, phase
angle and percent frequency effect (PFE). Phase angle in IP is
defined as the difference in phase between the input current
and the measured voltage response assuming sinusoidal wave­
forms for both.

In terms of a complex voltage V(oo), the phase angle at
frequency 00 is given by the arctangent of the ratio of the
imaginary component of the voltage to the real component.
That is, the phase angle 6(00) at frequency 00 is

1m V(oo)
9(00) = tan- I .

Re V(oo)

9(JOO tffi Z
) = 9(ffi l) ; 9(ffi z). (C-6)

On combining equations (C-5) and (C-6) and recalling equa­
tion (C-2), the desired relation is

where ~hase angle is evaluated at the geometric mean
(ffi = vlOOtffiz) of the two frequencies. Note that PFE is not in
general linearly related to phase angle. A linear relation is
valid only in the regime of small phase angles or, more pre­
cisely, when 28/1t In ffizlffi t « 1. In this limit the exponential in
equation (C-?) can be expanded to obtain the relationship

(milliradians), (C-8b)

PFE is a parameter computed from measurement of the volt­
age amplitude (i.e., peak voltage) at two different frequencies, a
low frequency (oodand a high frequency (OO z). The definition of
PFEis

or

PFE == 100 FE ~ 146.6 9

PFE = 100 FE ~ 0.146 6 e

(radians), (C-8a)

(C-3)

Zonge et aI. (1972) relationship

valid for 29/1t In ffiz/ffi l « 1. The small-phase angle approxi­
mation is applicable to the experiments of Vinegar and
Waxman (1984) on a suite of 20 shaly sand core samples. The
proportionality constant in equation (C-8b) is in good agree­
ment with the experimental value of 0.144 reported by Vinegar
and Waxman (1984).

Zonge et al. (1972) have also derived a theoretical relation­
ship between PFE and phase angle using equation (C-3) as
their starting point. The relationship they obtained is signifi­
cantly different from ours because of different approximations
and assumptions. Zonge et al. (1972) replace differentials with
differences in equation (C-3) and establish the approximate
relation

(C-9)

(C-10a)

(C-I0b)

(radians),

(miIliradians).

200 L\ffi
PFE~--9,

1tffi

PFE ~ 181.1 9

PFE ~ 0.181 1 9

where ro = JOOlffiz = ffilv!iO and L\ffi = ffi z - ffi h so that

or

It is clear that this result differs considerably from ours and
also from the experimental relationship reported by Vinegar
and Waxman (1984). Furthermore, Zonge et al. (1972) have
reported experimental values of FE and phase angles on a
suite of rocks. These experiments were performed on rocks
whose II? phase angles spanned a large range, from a few
milliradians to several hundred milliradians. In Table 2 the
nonlinear (NL) relationship derived here and the Zonge et al.
(1972) relationship are compared with these data. It is evident
that the theoretical relationship derived here [equations (C-7)
and (C-8)] is in better agreement with these data than is the
linear relationship derived by Zonge et al. (1972).

PFE == 100 FE = 100 IV(OO z)I - I V(ool)1 , (C-2)
. I V(oodl

where I V(OO z)I and I V(oo l) I are the high and low frequencies
measured voltage amplitudes, respectively. In equation (C-2)
we introduced the frequency effect (FE), which is simply the
PFE divided by 100. In definition (C-2) of PFE, it is under­
stood that the input current amplitude is independent of fre­
quency. Therefore, in equation (C-2) the voltage amplitudes
can be replaced with the corresponding apparent resistivities
without altering the definition of PFE.

In the derivation of a relation between PFE and phase
angle, the PFE is calculated using frequencies a decade apart,
that is, OOz = 1000 1, The starting point is an approximate re­
lationship given by Zonge et al. (1972),

1tdlnIV(oo)1
9(00) ~ 2 d In 00 .

In~
00 19(00) ~ 9(00 1) + [9(oo z) - 9(00 1) ] -. (C-4)

In OOz
00 1

On substitution of expression (C-4) into expression (C-3) and
integrating from 00 1 to ooz, after some algebra,

In IV(oo z)I = ~ 9(00 1) + 9(ooz) ln ooz . (C-5)
I V(ood I 1t 2 ffi t

It follows from expression (C-4) that at uJ = JffitOOz

A derivation of the above relation has been given by Balaba­
nian and Bickart (1969). Laboratory experiments on IP in
rocks have shown that 8(00) has a weak dependence on fre­
quency. Indeed, the data of Zonge et al. (1972) suggest that
over a decade interval of frequency the phase angle varies
approximately linearly with the logarithm of the frequency.
Therefore, we assume in the frequency interval 00 1 ::::; 00 ::::; 10001

that
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Theory of IP Logging in a Borehole 1849

APPENDIX D

A METHOD FOR SOLVING THE INVERSE INVASION PROBLEM
FOR AN IP LOGGING DEVICE

or on replacing a(i) by a<;;,

(D-7)

(D-5)

(D-6)

(D-3)

(D-4)

a ~ ~ d In Rt

t - 2 din 0)

1t d In Rxo
8xo ~"2 d In 0) ,

or on taking the indicated derivatives,

-. 1t 1 [ aVril din R aV(i) d In RJ
a(')~-- R -- xO R t

- 2 V(i) xO aR
x o

din 0) + taRt din 0) .

Furthermore, if a(i) denotes the theoretically computed
phase angle for the ith electrode pair, then

dl (')a(i) ~ ~ n V'(Rxo , Rt, rxo)
- 2 din 0) ,

and

for i = 1, 2, 3. The above equation is identical to equation (27)
since the apparent resistivities are proportional to the in-phase
voltages. Note that any two of the three equations (D-9)
should give the unknown values ax o and at. Any inconsist­
encies between solutions resulting from choosing different
pairs of equations indicates that either the theoretical model is
inadequate or the measured data are in error.

On substitution of equations (D-4) and (D-5) into the equation
(D-7),

denote the measured phase angle (in radians) for the ith elec­
trode pair from which EM coupling terms have been subtract­
ed. Recall the approximate relation in equation (C-3) which,
for constant current amplitude, gives the relations

for i = 1, 2, 3 where V~) = V(i)(R1, R~, b"), t:..R1+ I = R1+ I

- R1, etc. As noted earlier, on convergence of the above
equations after M iterations, the desired model parameters,
i.e., Rxo = R~, R, = R~ and rxo = bM, are obtained. Note that
the terms in equation (D-2) are identical to equations (29)
since the apparent resistivities are proportional to the in-phase
voltages.

The next step is to determine the IP parameters axo and at.
Let

(D-l)

(D-2)

for i = 1, 2, 3. Application of the Newton-Raphson method to
equation (D-l) leads to a set of algebraic recursion relations

aV(i) aVril avril
t:..R"+ I __" + t:..R"+ I __" + t:..b"+ I --" = _ V(i) + V(i)

I aR1 2 aR~ ab" " M,I'

The determination of unknown formation parameters from
logging data involves the solution of an "inverse problem." In
this appendix we describe a method for solving the inverse
problem for a simple model of a formation invaded by mud
filtrate. The method is general and can be applied easily to
more complex models of invaded formations.

The model consists of a borehole of known radius r = a

containing drilling mud of known resistivity Rm and IP pa­
rameter am = O. The annular region a s; r :::; rxo is assumed to
be invaded with mud filtrate and to have electrical parameters
Rxo and axo . The uninvaded formation (r > rxo) has electrical
parameters at and Rt . For this simple model of the invasion,
the unknown parameters to be determined are rxO, Rxo , R"
axo , and a,.

Determination of these parameters requires (1) at least five
independent measurements of the response of an IP tool, (2) a
computer program that can simulate the response of an IP
tool if the parameters of the model described above were
known (e.g., a solution of the forward problem discussed in
appendix A), and (3) a systematic method for combining the
measured logging data with the computer simulation program
to obtain the unknown parameters of interest. For an IP tool,
we consider a normal type of electrical logging tool operating
at a single frequency (in the frequency range of 32 Hz or
below) which consists of a source electrode A, a sink electrode
B, and three sets of measuring electrode pairs M and N. The
tool should have the capability to measure both the in-phase
and out-of-phase (with respect to the source current) potential
differences between the three electrode pairs. Let V~, I and
V~, Q denote the in-phase and out-of-phase measured poten­
tial differences for the ith electrode pair (i = 1, 2, 3). The negli­
gible dependence of the in-phase voltage (potential difference)
in shaly sands on the IP parameters axo and at leads to a
simplification of the inverse problem.

The inverse resistivity problem can be solved by ignoring
the dependence of the in-phase voltage on the IP parameters.
The resistivities and invaded zone radius thus determined
from this inverse problem can be used to solve for 8xo and 8,.

Let V(i)(R I , R2 , b) denote the in-phase potential difference
calculated using the computer program which simulates the
response of the IP tool where R I , R 2 , and b correspond to the
invaded-zone resistivity, the formation resistivity, and the
invaded-zone radius, respectively. We choose values of R I , R 2 ,

and b such that
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